
International Journal of Emerging Engineering Research and Technology 

Volume 5, Issue 5, 2017, PP 30-39 

ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) 
 

 
 

 

International Journal of Emerging Engineering Research and Technology V5 ● I5 ● 2017                        30 

A Hierarchical Multi-Label Classification Approach for Fault 

Diagnosis in Industrial Units 

Mehdi Namdari*, Hooshang Jazayeri-Rad
2
 

2 
Departments of Instrumentation and Automation, Petroleum University of Technology, Ahwaz, Iran 

*Corresponding Author: Departments of Instrumentation and Automation, Petroleum University of 

Technology, Ahwaz, Iran. Email: nmdri.mehdi@gmail.com  

Received Date: 29-08-2017       Accepted Date: 11-09-2017        Published Date: 06-10-2017 

 

INTRODUCTION 

Current industrial processes are turning out to be 

more and more complex. These processes are 

controlled in closed loops, include enormous 

number of constituents and utilize a large 

amount of variables. Fault diagnosis plays a key 

role to attain a high level of safety, quality and 

reliability in the control systems for these plants. 

Process fault diagnosis being the goal of the 

present work is linked to the process monitoring 

as a more comprehensive task. The aim of 

process monitoring is to safeguard the 

realization of the scheduled procedures by 

identifying abnormal process behaviors.   

Owing to the wide ranges of the process fault 

diagnosis problems and the complications in 

their operational clarifications, numerous 

methods extending from analytical techniques to 

artificial intelligence and statistical methods 

have been established over the years [1]. 

However, complications encountered in building 

complete real-time models for real industrial 

plants which include many components, pushed 

the first attempts of the model-based fault 

diagnosis methods towards those that are 

commonly data-driven [2]. In these methods, 

without Necessitating the construction of any 

form of model for the process, generally the data 

acquired by the measurement tools are 

employed.  

For data-based fault diagnosis the most 

dominant technique, which will also be 

employed in this work, is the supervised 

classification. In the supervised categorization, a 

set of examples with related labels or class types 

exists against the unsupervised classification 

where the raw data contain no labels. Different 

classification methods are also examined in this 

field including: the K-nearest neighbour [3], 

Fisher discriminant analysis [4], Bayesian 

networks [5], artificial neural networks [6-8] 

and Support Vector Machines (SVMs) in more 

current works [9-12]. 

The fault diagnosis based on classification 

methods have been effectively applied in 

various types of dynamical systems; however, 

there are still a number of practical limits in 

designing such systems for the large-scale 

complex chemical plants. One important 

concern is the consistent and practical 

management of multiple simultaneous faults. 

The conventional multi-class formulation often 

considered in the literature is based on the 

mono-label classification where an input data is 

restricted to be allocated to only one class. 

Mono-label classification resolves the 
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simultaneous fault diagnosis problem by 

allowing for different combinations of single 

faults as new autonomous classes. Under this 

tactic the basic classifier should be trained for 

single fault classes and also for the newly 

introduced synthetic classes resulting from 

different groupings of all single fault classes 

[13]. However, it can clearly be concluded that 

this approach would be entirely prohibitive for 

large processes not only because of 

computational cost but also for the requirement 

of huge training information for different single 

and multiple faults. The multi-label 

classification considered in this work can be 

used as a substitute for the conventional mono-

label formulation. This approach permits 

allocating each incoming data pattern to more 

than a single class [14]. 

Another challenge of the classification-based 

fault diagnosis procedures is the occurrence of 

significant number of faults. It is not unexpected 

that in a real complex chemical plant, due to the 

enormous number of installed components, 

hundreds or thousands types of faults with 

different known and unknown causes are 

possible. It should be noted that the general fault 

diagnosis problem is typically viewed as a flat 

classification task in the literature, where 

classification decisions are made within all of 

the existing class labels in one step. However, 

another procedure in the fault diagnosis problem 

could be the hierarchical classification where 

the classification task is accomplished in several 

steps through some levels of hierarchy. In this 

way, in each layer of hierarchy, some 

combinations of single faults can form new 

classes called meta-faults, and the classification 

process will be accomplished in subsequent 

levels between meta-faults until one or more 

single faults are predicted in the final levels. 

Through the hierarchical classification, the 

initial complicated large-scale categorization 

problem will be transformed into several regular 

problems in different levels of hierarchy. Each 

of these sub-problems can be resolved much 

more efficiently and more perfectly as well. 

Hence, the initial complexity will be reduced 

and the overall classification performance may 

improve significantly.  

This work handles the hierarchical classification 

and also the multi-label fault diagnosis in a 

chemical plant. The main impact of this work is 

the proposition of an original systematic 

procedure to design a hierarchical structure of 

classifiers using process data measurements to 

accomplish fault diagnosis in the chemical plant. 

The foremost aim of the proposed methodology 

is to enhance the overall classification 

accomplishment of the learning system when 

compared to those approaches which are based 

on the flat classification configurations. This 

objective may be considered in cases where the 

number of the fault classes is large. Moreover, a 

more reliable and robust structure of classifiers 

may be attainable. 

SVM CLASSIFIER  

The SVM classification technique is a relatively 

new class of machine learning algorithm which 

is based on the structural risk minimization 

principle from the statistical learning theory 

[15]. SVM in its simple form is a binary 

classifier designed to separate a set of positive 

examples from the negative examples 

employing a maximum margin hyper-plane. The 

margin of a classifier can be quantified as the 

width up to which the boundary can be stretched 

on both sides before it hits one of the data 

samples. The samples onto which this margin 

hits are known as the support vectors. The SVM 

classifiers, due to the some of their outstanding 

characteristics such as simple design and 

implementation, evident generalization, 

capability in capturing nonlinearity and better 

dealing with  low sample high input feature 

problems have become an increasingly prevalent 

method for machine learning activities including 

classification, regression and outlier detection in 

numerous applications. Detailed explanation of 

SVM is presented elsewhere [15]. 

MULTI-LABEL CLASSIFICATION 

Fault diagnosis issue is seldom addressed as a 

multi-label classification task and the traditional 
mono-label approaches are extensively 

employed in the literature instead. Nevertheless, 

the classification of the simultaneous faults 
requires simultaneous class assignment which 

naturally makes the fault diagnosis problem a 

multi-label classification issue. Following this 

parallelism, different developed techniques in 
the machine learning domain for solving the 

multi-label classification problems could also be 

applied to fault diagnosis tasks as well. The first 
attempt to this approach is represented in [16] 

where a problem transformation method using 

SVM as the learning algorithm is proposed. This 
approach transforms the original k-fault 

category problem into the k binary mono-label 

classification task through a proposed 
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binarization technique based on the One Versus 

All (OVA) decomposition technique. This 
method is evaluated on the TEP benchmark to 

diagnose single and multiple fault cases and 

successful results have been obtained when 
diagnosing up to four simultaneous faults as 

detailed in [16]. This Multi-Label (ML) 

strategy, denoted to as the ML-OVA method, 

seems can effectively handle the multiple fault 
diagnosis issue in chemical processes is also 

adopted in this work. 

HIERARCHICAL MULTI - LABEL 

CLASSIFICATION 

Considering the ML-OVA method presented in 

the previous section, one natural consequence 

due to the employed decomposition strategy 

would be the generation of the imbalanced 

training set. This approach considers the flat 

classification method in which binary classifiers 

must separate the training samples of each 

single class (positive label) from all other 

remaining classes (negative label) in one step. 

Hence, the negative samples greatly outnumber 

the positive ones. The imbalanced data issue 

may significantly reduce the performance of any 

typical learning algorithms. As the number of 

classes increases, the ML-OVA method would 

create more imbalanced training distributions, 

consequently desirable results may not be 

obtained when directly employing this technique 

for large class classification problems. In order 

to deal whit this issue, a hierarchical version of 

the ML-OVA method called the HML-OVA 

technique is anticipated in this work. In the 

HML-OVA technique the original large class 

problem will be transformed into several small 

ones. As a result, a more balanced example 

distribution than the flat classification procedure 

of the ML-OVA method (where all the classes 

are arranged in the same level) is achieved. 

Assume a typical fault diagnosis problem with 

five categories of faults specifically: F1, F2, F3, 

F4 and F5. Figure 1 illustrates the flat and 

hierarchical classification structures for the 

classifiers. The hierarchical structure in Figure 

1(b) may be obtained based on a proposed 

procedure using the confusion matrix which will 

be described later. As seen in Figure 1, in the 

flat classification, one classifier is trained to 

distinguish all the considered faults in one single 

step. This multi-label classifier may be 

constructed based on the ML-OVA method and 

in this case it is basically constructed using a 

group of binary SVM classifiers (indicated as B-

SVM in Figure 1). In the hierarchical 

classification however, more than one multi-

label classifier is employed in different parts of 

the taxonomy. The classifiers are basically 

arranged in the first and second layers (denoted 

as Lf and Ls, respectively). Each multi-label 

categorizer operates as a flat categorizer in its 

corresponding level and may be constructed 

based on the ML-OVA method. The classifiers 

in the First Level of Hierarchy (FLH) categorize 

between some single faults and also some 

combinations of single faults called meta-faults. 

The Second Level of Hierarchy (SLH) also 

breaks each meta-fault to its comprising single 

faults. Generally, meta-faults can contain 

overlapped regions in which they have common 

single faults (such as fault 3 in the meta-faults 1 

and 2). The training procedure for the 

hierarchical scheme is accomplished in this way. 

The FLH classifiers will use all sets of the 

training data and will be constructed based on 

the ML-OVA method i.e. corresponding to each 

meta-fault (single fault); one binary classifier is 

trained to separate the training data of that meta-

fault (single fault) from all other faults. It is 

worth to remember that in the ML-OVA method 

for the normal state (named as 0 in Figure 1) a 

separate binary classifier is not trained. 

However, normal data will be used as negative 

label samples for training other binary 

classifiers. For example, in FLH as shown in 

Figure 1, for the meta-fault 2 binary classifier, 

the positive label set contains the F3, F4 and F5 

samples and the negative label set contains F1, 

F2 and the normal samples. The same procedure 

is employed in the training of the SLH 

classifiers corresponding to each meta-fault, 

except that for each meta-fault the training data 

exclusively belonging to its sub-faults are used. 

For example, for the L s,1-classifier (s stands for 

the second level and 1 stands for the multi-fault 

1) the training set is comprised of faults 2, 3 and 

normal samples. Two binary classifiers are then 

needed to be trained corresponding to faults 2 

and 3 based on the ML-OVA classification 

system. 

In the HML-OVA method, the testing procedure 

for a new example is performed in a top-down 

manner. First, the FLH determines the 

classification path by assigning the input sample 

to some of the meta-faults or single faults. Also, 

it is possible that none on the comprising binary 

SVM classifiers in the FLH predicts a positive 

label. In this case the example will be classified 

as normal state and the prediction procedure is 

ended. Otherwise, the SLH classifiers 

corresponding to the positive label meta-faults 
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will be activated to classify the example to one 

or more single faults or the normal condition. 

The union of the all predictions will determine 

the set of final labels for the example. Also, note 

that if in a case some predictions are faulty and 

some other predictions are normal, the normal 

predictions are discarded. For example, consider 

that the dashed lines in Figure 1(b) be the 

classification path for an input example. As 

indicated, all the binary SVM classifiers in the 

FLH predicted positive label for the example, 

hence the sample is assigned to fault 1 and also 

the L s,1- and L s,2-classifiers are activated for 

further predictions. Next, although no binary 

SVM in the L s,1-classifier predicted positive 

label for the example (consequently the sample 

will be classified to the normal class by the      L 

s,1-classifier), the L s,2-classifier assigned the 

example to faults 3 and 5. Hence, the set of 

predicted labels will be {1, 3 & 5}. Figure 1(a), 

shows the corresponding prediction procedure in 

the flat classification system. 

 

Figure1. Classification procedures. (a) Flat structure. (b) Hierarchical structure 

In comparison to the flat classification strategy, 

for the proposed hierarchical classification type, 

more than just one multi-label classifier is 

employed in a way that each one deals with a 

smaller set of labels and a more balanced 

training distribution. Due to this fact, enhanced 

classification performance is expected. 

Moreover, low level classifiers are concentrated 

on the subsets of classes containing a reduced 

amount of training examples. So, local 

parameter tuning and feature selection for these 

classifiers will usually improve their accuracy 

and consequently these enhance the general 

performance of the whole learning system. Also, 

based on the above proposed process for the 

hierarchical classification technique, one may 

argue that the computational cost in the training 

step will be high. This would be true because (i) 

the hierarchical structure must be initially 

designed and (ii) more binary classifiers than the 

flat structure are needed to be trained (8 binary 

classifiers for the example hierarchical structure 

in Figure 1 compared to 5 for the flat 

construction). However, it is worth mentioning 

that the procedure of hierarchical mining and 

trainings of the binary classifiers can be 

executed offline. If we can determine a 

reasonable taxonomy and can thus improve the 

classification efficiency, the additional offline 

data preparations are defiantly worthy of being 

performed. 

However, there is still one important open issue 

about how to design the hierarchical structure as 

the basic framework of the learning system. The 

design of the hierarchy generally refers to 

selecting the faults which should be combined to 

form meta-faults in the first level of the 

taxonomy. We propose a similarity-based 

approach in this work, in which the faults that 

have similar classification properties are 

combined together to form the first level meta-

faults. For this purpose, the confusion matrix is 

employed to recognize similar faults.  The 

confusion matrix is a standard output 

representation of classification problems which 

gives for each of the learned category, the true 

fault of the instances against the predicted 

faults.  Classification performance indices such 

as recall and precision may be then calculated 

using the entry values of the matrix [14]. In this 

application, the confusion matrix is primarily 

employed to provide information about the 

nature of the classification problem and the 

relations among the faults. These invaluable 

indicators are then used to design the fault 

diagnosis system. To determine the confusion 
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matrix, a multi-class/mono-label classifier must 

be trained using parts of the training data. The 

training information regarding to all of the fault 

categories needs be considered in this part. 

Information provided by the confusion matrix 

gives us an insight into the similarities of the 

faults. Because in setting up the classification 

problem similar faults will be confused amongst 

each other. For example, if faults A and B are 

two similar faults then the classifier may 

misclassify fault A as fault B and vise-versa. 

Faults A and B are thus said to be confusing 

faults. High misclassification values in the 

confusion matrix indicate similar/confusion 

faults which are then combined together to form 

the meta-faults. This procedure will be 

elaborated step by step in the next section using 

an application to the TEP dataset. 

APPLICATION: TENNESSEE–EASTMAN  

PROCESS 

The TE process benchmark is employed in this 

work to evaluate the proposed fault diagnosis 

method because of its complexity and 

acceptance. The TE process is the simulation of 

a chemical plant created by the Eastman 

Chemical Company to offer a representative 

industrial process for assessing process control 

and fault diagnosis methods [17]. The TEP 

simulator can generate one normal state, 20 

types of isolated faults, as well as any multiple 

combinations of these faults. 

Initially, only single fault experiments are 

carried out. Therefore, 21 simulation runs 

corresponding to 20 single faults and one 

normal state are performed. A sampling time for 

the recording of the observed data must be 

considered. This should be selected according to 

the characteristics of the chemical process in 

order to obtain a good dynamic performance for 

its variables. According to the discussions 

presented in [18], a sampling time of 3 minutes 

is selected here to take into account the time 

constants of TEP and also the instrumentation 

limitations for recording sampled values. Each 

simulation run, which took 26 hours, initiated 

with no fault then faults were introduced one 

hour after the simulation started. The total 

number of observations recorded for each run 

was 520. However, only 500 observations were 

collected after the introduction of each fault.  

The obtained dataset are then randomly 
partitioned into two subsets: the training and 
validation sets with 60 and 40 percent of overall 
samples, respectively. The training set will 

come in useful for building each binary 
classifier model when applying the learning and 
classification algorithm. The validation set will 
be used for the parameter tuning purposes and 
also for the calculation of the confusion matrix 
used for the taxonomy design.  

In order to generate the test dataset for the final 

evaluation purposes of the trained learning 

systems, 20 different simulation runs 

corresponding to 20 fault states are employed. 

In the test data generation procedure, the TEP 

simulator is not run under normal state. This is 

due to the implicit assumption made in this 

work that the fault detection task only deals with 

detecting the process abnormal conditions. 

While, in the fault diagnosis the types of faults 

are identified. Hence, it has been presumed that 

a reliable and robust fault detection model, 

which can isolate the normal data from 

abnormal ones with high accuracy such as the 

one-class SVM-based method proposed in [19], 

is previously operational in the plant. Therefore, 

the developed fault diagnosis systems in this 

work will not be examined to determine the 

normal state of the plant. The fault diagnosis 

and fault detection models may be utilized in a 

parallel manner so that one input example is 

submitted to both models. The abnormal 

prediction by the fault diagnosis model is 

discarded if the example is classified as normal 

by the fault detection model.  

HIERARCHICAL STRUCTURE BUILDING 

The first step in the implementation of the 

hierarchical classification system is the design 

of a hierarchical structure of classifiers. For this 

task, we provide a data-based mechanism in 

which no process knowledge about fault 

characteristics is required. The technique relies 

on the acquired measured data from the process. 

The procedure starts with learning a multi-class 

classifier using the training dataset of the whole 

fault categories. The trained multi-class 

classifier is then used to calculate a confusion 

matrix fault by fault based on the prediction on 

the validation dataset. The classifier learning 

carried out in this step is merely used for the 

hierarchical structure design purpose and the 

learned classifier would not ultimately be 

employed in final fault diagnosis learning 

system. Hence, a mediocre/quick classification 

technique can be applied for this purpose. We 

used a linear SVM classifier based on the One 

Versus One (OVO) multi-class strategy. In this 

work for all SVM learning tasks, the LIBSVM 

software developed by [20] is used. LIBSVM is 
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a library for the support vector classification, 

support vector regression and one-class SVM. In 

the OVO technique, for each fault-pair a binary 

classifier must be trained to separate the training 

data of one fault from another. Since there are 

20 fault classes in our problem, 20*19/2=190 

independent binary SVM classifiers for each 

fault-pair are trained using the training data 

belonging to the fault-pair. To extract the 

confusion matrix, the validation dataset is 

applied to the trained binary classifiers and a 

majority voting strategy is then employed to 

combine the binary classifier outputs to obtain 

the classification decision for each input sample.  

The obtained confusion matrix is shown if 

Figure 2(a). The matrix dimensions are 20 by 
20. One column in this matrix is allocated for 

each fault to present the prediction results. The 

values in each column of the matrix represent 
the number of samples belonging to a fault 

classified to the same or misclassified to 

different categories by the learning algorithm. 

For example, the entry in column 5 and row 3 
represents that 12 samples of the fault 5 dataset 

are misclassified as fault 3. Not that the sum of 

the elements in any column is 200 which is the 
sample size considered for each fault in the 

validation data set.  Ideally, if the accuracy of 

classification for each sample is equal to 100%, 
the matrix will only contain diagonal entries 

corresponding to all input samples being 

correctly predicted to their matching true 

classes. In reality, the confusion matrix is often 
smudged with small values being distributed all 

over the matrix as occurred in our problem. 

These values however give valuable information 
about the nature of the classification problem in 

terms of class similarity.  

After normalizing each column to one and 

ignoring the diagonal entries, the obtained 
values for each column can be considered as a 

degree of confusion between the fault 

corresponding to that column and the other 
faults. Now, a fault corresponding to a column 

can be combined with those faults which are 

predicted with high degrees of confusion to 
form groups of meta-faults. Here, a threshold 

needs to be considered so that only faults with 

higher confusion degrees than the threshold 

level are selected. This threshold is required to 
avoid building needless meta-faults. Therefore, 

without necessitating extra computational cost 

only those similar faults which depend on the 
nature of the diagnosis problem will be grouped 

together. We used a heuristic value of 0.025 as 

the confusion degree threshold in our problem. 

The elements of the confusion matrix which 

exceed this threshold are shown in bold face in 
Figure 2(b). For a column corresponding to a 

fault, the high degree confusion faults are 

combined to form 20 groups of faults shown in 
Figure 2(c). Finally, to alleviate computational 

complexity and avoid repetitious learning 

operations, those groups which their constituent 

faults are completely repeated in other groups 
are removed. For example, the fault-3 group as 

seen in Figure 2(c) comprises of faults 3, 5 and 

9. All of these faults are simultaneously 
repeated in other groups such as the fault-9 

group. Hence, the fault-3 group is removed. 

This procedure is performed to eliminate other 
repetitious groups. The final obtained fault 

taxonomy is represented in Figure 2(d).  

As seen in Figure 2(d), many single faults were 

not contributing in the formation of meta-faults. 
This is due to the fact that these faults are 

accurately classified and are not participating as 

confusing faults for other faults. Consequently, 
these well-behaved faults are solitary placed in 

the first level of hierarchy and their 

corresponding prediction process is performed 

in one step. Also, as shown in Figure 2(d), some 
faults such as 5 and 3 are repeated in several 

meta-faults. This is due to the fact that these 

faults are repeatedly recognized as the confusion 
faults by other faults. The additional learning 

operations for these faults however may reduce 

the probability of the classification system to be 
confused in discriminating between different 

faults and subsequently the classification 

performance will be improved.  

TRAINING OF THE DIAGNOSTIC SCHEME 

Once the taxonomy is organized the structure is 

trained using the HML-OVA method described 

in section 4. The classifiers are arranged in two 

layers of hierarchy. For the first level, as seen in 

Figure 2(d), there are altogether 13 single faults 

and meta-fault classifiers. Hence, according to 

the HML-OVA training method, 13 binary SVM 

classifiers must be trained for the FLH using the 

whole sets of the training data. For the FLH 

classifiers soft margin linear SVM are used as 

the basic binary classifier because no significant 

improvement was observed using non-linear 

kernels. This is not surprising however, because 

some experiments in other applications have 

also indicated that for large datasets and high 

dimensional spaces an SVM classifier generates 

identical testing results with or without a 

nonlinear mapping being employed [19]. 

Moreover, the value of the kernel function must 
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be calculated for each sample in the non-linear 

SVM. Therefore, for large data sets the training 

time will become very prohibitive in 

comparison to the linear SVM. As a result, no 

mapping operation of the training samples to 

high dimensional spaces is performed.

  

Figure2. Taxonomy extraction procedure. (a) Confusion matrix for the validation data set. (b) Degrees of 

confusion between each fault and others (represented in each column). (c) Groups of each fault and its 

confusion faults. (d) Final taxonomy. 

In the SLH, corresponding to each meta-fault 

one multi-label classifier must be trained to 

distinguish the single faults within the meta-

fault. Also, as discussed before, in the training 

of each SLH meta-fault classifier only the 

training data associated to the comprising single 

faults of the meta-fault are utilized. Hence, in 

the training of an SLH classifier a lower number 

of labels of faults and a lower size of the 

training data than for an FLH classifier are 

required. For that reason, in the training of the 

SLH classifiers, it has been observed that 

utilization of nonlinear kernels results in a 

significant performance boosting. Therefore, for 

the binary SVM classifiers in the SLH, non-

linear kernels are used to obtain a better 

performance for the whole learning system. For 

this purpose, we have chosen the RBF kernel 

function for all the binary SVM classifiers.  This 

kernel function contains only one parameter, γ, 
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to be selected and can approximate most types 

of kernel functions including the lineal kernel if 

the SVM parameters C and γ are properly 

chosen. 

Here, one important issue arises about the 

appropriate parameter selections in setting up 

the SVM models in the hierarchical system. 
Proper parameter selection has a great influence 

on the overall classification performance. In the 

proposed hierarchical scheme, several multi-

label classifiers operate in different 
classification space and hence different training 

parameters must be selected for each of them. 

This requirement however makes the training 
parameter selection a challenging task due to the 

plurality of the parameters. For example, in our 

problem, 4 different γ and 5 different C 

parameters must be selected. Here, we propose a 
procedure in the parameter selection phase 

which may lead to optimal performance of the 

classification system. The procedure starts from 
the parameter selections for the SLH classifiers. 

Considering the planed hierarchical structure, 

the performance of a classifier in the SLH can 
be measured independent from the other SLH 

classifiers and without getting involved into the 

training of the FLH classifiers. The parameters 

of an SLH meta-fault classifier are chosen in a 
way to obtain the best performance indices for 

its constituent single faults. We used a grid 

search on the parameters C and γ where each 
parameter grows exponentially (for example, 

C=2^(6), 2^(7), …, 2^(12) and γ=2^(-8), 2^(-7), 

…, 2^(0)). Various pairs of C and γ are chosen, 
the multi-label classifier is then trained using the 

selected pair of parameters for one of the SLH 

classifiers. Prediction on validation dataset is 

employed to calculate the F1 index fault by 
fault. See [14] for detailed information 

regarding to the performance evaluation indices 

including F1 index. Finally, the pair of 
parameters which results in the best value of F1 

index is selected. This procedure is then 

repeated for each of the other SLH classifiers to 
find their corresponding optimal pairs of 

parameters.  

For the FLH classifiers, as mentioned before, a 

linear kernel SVM classifier is considered and 

so the penalty parameter C is the only parameter 
which must be tuned. To tune the parameter C, 

all the SLH classifiers are primarily trained 

using the best parameters found before. Then, 

the FLH classifiers are trained using consecutive 
exponentially (powers of 2) increasing values of 

C. For each trained classifier, the validation 

dataset are applied to the whole classification 
system which includes the FLH and SLH 

classifiers to determine the F1 measures for all 

of the fault states. The same training parameter 
is utilized for all of the FLH classifies. In our 

work, the value of C which leads to the best 

macro-average F1 measure is equal to 2^5. 

DIAGNOSIS RESULTS 

The trained structure in the previous section can 

now be evaluated using the test data. The 

prediction procedure for one new test sample is 
detailed in section 4. Based on that procedure, 

the whole test data set is fed to the system and 

the F1 measures are computed fault by fault. A 
multi-label classifier based on a flat 

configuration is then trained. As pointed out 

before, in the flat classification strategy, there 
are no super-classes or sub-classes and all the 

constructed classifiers are organized in one 

level. Therefore, using the ML-OVA method, 20 

binary SVM classifiers corresponding to 20 
faults are needed to be trained. 

 

Figure3. F1 indices for the hierarchical and flat classification systems. 

The final F1 indices obtained by the hierarchical 
and flat configurations are depicted in Figure 3. 

As seen in this figure, in most cases, better 
diagnosis results are obtained by the hierarchical 
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classification configuration than the flat one. 

However, via the hierarchical classification 
system, the main improvements are achieved for 

those faults which can hardly be diagnosed by 

the flat classification type. These faults include 
faults 3, 9, 15 the  diagnosis of which  had 

hardly been addressed in previous works [19]. 

The flat classifier was unable to diagnose faults 

3, 9 and 15. However, the hierarchical system 
offers the F1 indices of 0.618, 0.353 and 0.472, 

respectively for these faults.  Also, the average 

level of F1-measure improved to 0.742 in 
comparison to 0.572 obtained by the flat 

structure.  

Yet, the diagnosis results of the hierarchical 

method for some faults are not satisfying 

enough. For example, fault 16 was not 
diagnosed properly. The low efficacy of the 

diagnosis performance for this fault and some 

other ones can be originated from either the 
FLH or the SLH classifiers. Since the main 

focus of this work was the demonstration of 

practicability of the proposed hierarchical 

classification method, in the classification phase 
of the FLH classifiers some simplifications are 

considered. For example, a linear kernel with a 

single parameter C is utilized for all the binary 
SVM classifies. Furthermore, to train the 

classifiers raw data were employed without 

applying any pre-filtering using the available 

statistical techniques. These assumptions 
however need to be reconsidered in a real 

situation in order to design a more elaborate 

classifier and obtain better diagnosis results.  

In addition, previous studies indicated that a 

major improvement of the diagnosis performance 
can be achieved through the selection of the key 

variables for the classification [4]. This issue is 

not considered in this paper. Key variables form 
a subset of the whole input variables of a fault 

diagnosis problem.  If these variables are 

properly selected, they improve the 
classification performance. Only a few variables 

are significant in discrimination of different 

faults. Hence removing other non-informative 

variables will have a positive effect on the 
sensitivity and accuracy of the classifier. This 

idea seems to be more practicable for the SLH 

classifiers which are concentrated on the subsets 
consisting of identical faults. These 

investigations however, were not within the 

objectives of this work and may be considered 

for future studies. 

CONCLUSIONS 

A systematic method of designing fault 
diagnosis systems based on the classification 

tools are considered in this paper. This method 

comprises data processing, algorithm learning 
and performance assessment. During this 

procedure, a hierarchical classification-based 

methodology is proposed as a consistent 
learning algorithm to provide improvements in 

the fault diagnosis performance of the large-

scale industrial plants. Based on the proposed 

approach, rather than learning one complex 
global classification algorithm for 

discrimination between the entire original faults 

classes, a set of classifiers organized in a 
hierarchical structure are employed in a manner 

that each one handles  a lower number of class 

labels. We designed a data-based procedure to 
construct the hierarchical structure leading to 

two levels of classification tasks. In the first 

level, the classification problem handles 

discrimination between some single faults and 
some meta-faults. These meta-faults are 

basically composed of combinations of some 

single faults which have identical classification 
features and are usually being confused by 

conventional classification methods. In the 

second level, the classification task deals with 

the decomposing of each meta-fault into its 
constituent single faults.  The hierarchical 

learning task is scheduled in a manner that the 

trained classification system is more focused on 
those faults which may not be easily diagnosed.     

The entire set of the TEP faults are employed in 
this work in order to assess the proposed 

procedure. For most of the fault cases, a greater 

diagnosis performance is realized in comparison 
with a case where a single layer multi-label 

classifier is used. However, the advantage of the 

procedure is more prominent for the challenging 
faults which cannot be appropriately diagnosed. 

Besides, important information about faults 

relations in classification perspective is offered. 

For example challenging fault cases are 
identified and separated from others. This 

enables this approach to use accurate separate 

classifiers for these cases in the second level of 
hierarchical classification system without 

concurrently handling the diagnosis of other 

faults using the same classifier. However, one 
main disadvantage of the proposed method may 

possibly be its computational load in learning 

stages which handles a hierarchical structure 

design, extra learning tasks and classifiers 
parameters adjustments. Though, it should be 

stated that these procedures are related to the 

off-line tasks and once the hierarchical 
classification system is trained, the prediction 

computation for a new test data will generally 
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be executed in two steps of the hierarchy. Hence 

the testing time for the hierarchical system is 
similar to one single flat classifier.  Considering 

the advantages of the proposed algorithm, it can 

efficiently be employed in the on-line fault 
diagnosis applications. 
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