
International Journal of Emerging Engineering Research and Technology 

Volume 5, Issue 8, 2017, PP 28-31 

ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) 
 

 
 

 

International Journal of Emerging Engineering Research and Technology V5 ● I8 ● 2017                        28 

Quantum Communication Based on Simon’s Algorithm 

K. Nagata,
1
 T. Nakamura,

2
 H. Geurdes,

3
 J. Batle,

4
 S. Abdalla,

5
 and A. Farouk

6
  

1
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea 

2
Department of Information and Computer Science, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, 

Yokohama 223-8522, Japan 
 
3
Geurdes Datascience, KvK 64522202, C vd Lijnstraat 164, 2593 NN, Den Haag Netherlands 

4
Departament de F´ısica, Universitat de les Illes Balears, 07122 Palma de Mallorca, Balearic 

Islands, Europe 
 
5
Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203, 

Jeddah 21589, Saudi Arabia 

 
6
Computer Sciences Department, Faculty of Computers and Information, Mansoura University, 

Egypt 

*Corresponding Author: K. Nagata, Department of Physics, Korea Advanced Institute of Science and 

Technology, Daejeon 34141, Korea 

Received Date: 13-11-2017 Accepted Date: 24-11-2017       Published Date: 05-12-2017 

 

INTRODUCTION 

Quantum communication is the art of 

transferring a quantum state from one place to 

another. Traditionally, the sender is named 

Alice and the receiver Bob. The basic 

motivation is that quantum states code quantum 

information - called qubits in the case of 2-

dimensional Hilbert spaces and that quantum 

information allows one to perform tasks that 

could only be achieved far less efficiently, if at 

all, using classical information. 

A quantum computer is a device for 

computation that makes direct use of quantum 

mechanical phenomena, such as superposition 
and entanglement, to perform operations on 

data. Quantum computers are different from 

digital computers based on transistor gates. 
Whereas digital computers require data to be 

encoded into binary digits (bits), quantum 

computation utilizes quantum properties to 

represent data and perform operations on these 
data [1]. A theoretical model is the quantum 

Turing machine, also known as the universal 

quantum computer. Quantum computers share 

theoretical similarities with non-deterministic 

and probabilistic computers, like the ability to 
be in more than one state simultaneously. The 

field of quantum computing was first introduced 

by Richard Feynman in 1982 [2, 3]. 

The Deutsch-Jozsa algorithm is a quantum 

algorithm, proposed by David Deutsch and 

Richard Jozsa in 1992 [4] with improvements by 

Richard Cleve, Artur Ekert, Chiara 

Macchiavello, and Michele Mosca in 1998 [5]. 

Although of little practical use, it is one of the 

first examples of a quantum algorithm that is 

exponentially faster than any possible 

deterministic classical algorithm. It is also a 

deterministic algorithm, meaning that it always 

produces an answer, and that answer is always 

correct. 

The Deutsch-Jozsa algorithm generalizes earlier 

(1985) work by David Deutsch, which provided 

a solution for the simple case. Specifically we 

are given a boolean function whose input is 1 

bit, f : {0, 1} → {0, 1} and asked if it is constant 

[6]. 
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The algorithm as Deutsch has originally 

proposed it is not, in fact, deterministic. The 
algorithm is successful with a probability of one 

half. In 1992, Deutsch and Jozsa produced a 

deterministic algorithm which was generalized 
to a function which takes N bits for its input. 

Unlike Deutsch’s algorithm, this algorithm 

requires two function evaluations instead of 

only one. 

Further improvements to the Deutsch-Jozsa 

algorithm are made by Cleve et al., [5] resulting 

in an algorithm that is both deterministic and 
requires only a single query of f. This algorithm 

is still referred to as Deutsch-Jozsa algorithm in 

honour of the groundbreaking techniques they 
employed [5]. 

The Deutsch-Jozsa algorithm provides 

inspiration for Shor’s algorithm and Grover’s 

algorithm, two of the most revolutionary 
quantum algorithms [7, 8]. 

Looking at studies of quantum computing, 

implementation of a quantum algorithm to solve 

Deutsch’s problem [4—6] on a nuclear 

magnetic resonance quantum computer is 

reported firstly [9]. An implementation of the 

Deutsch-Jozsa algorithm on an ion-trap quantum 

computer is also reported [10]. There are several 

attempts to use single-photon two-qubit states 

for quantum computing. Oliveira et al. 

implements Deutsch’s algorithm with 

polarization and transverse spatial modes of the 

electromagnetic field as qubits [11]. In addition, 

single-photon Bell states are prepared and 

measured [12]. Also the decoherence-free 

implementation of Deutsch’s algorithm is 

reported by using such single-photon and by 

using two logical qubits [13]. A one-way based 

experimental implementation of Deutsch’s 

algorithm is reported [14]. 

For a number of recent algorithmic 

developments we mention the following. In 

1993, the Bernstein-Vazirani algorithm was 

reported [15, 16]. This can be considered as an 

extended Deutsch-Jozsa algorithm. In 1994, 

Simon’s algorithm was reported [17]. 

Implementation parity problem without 

entanglement on an ensemble quantum 

computer can be mentioned as an important 

quantum algorithm [18]. Fiber-optics 

implementation of the Deutsch-Jozsa and 

Bernstein-Vazirani quantum algorithms with 

three qubits was also discussed in the recent past 

[19]. The question if quantum learning is robust 

against noise is studied [20]. 

A quantum algorithm for approximating the 

influences of Boolean functions and its 
applications is recently studied [21]. In addition, 

Quantum computation with coherent spin states 

and the close Hadamard problem [22] and the 
transport implementation of the Bernstein-

Vazirani algorithm with ion qubits are studied 

[23]. Quantum Gauss-Jordan elimination and 

simulation of accounting principles on quantum 
computers are discussed [24]. We mention that 

the dynamical analysis of Grover’s search 

algorithm in arbitrarily high-dimensional search 
spaces is studied [25]. A method of computing 

many functions simultaneously by using many 

parallel quantum systems is reported [26]. 

On the other hand, we may wonder if we need 

all the previously mentioned studies to reach our 

goal. The earliest quantum algorithm, the 

Deutsch-Jozsa algorithm, is representative to 
show that quantum computation is faster than its 

classical counterpart. Its magnitude grows 

exponentially with the number of qubits. In 
2015, it was discussed that the Deutsch-Jozsa 

algorithm can be used for quantum key 

distribution [27]. In 2017, it was discussed that 

secure quantum key distribution based on 
Deutsch’s algorithm using an entangled state 

[28]. Subsequently, a highly speedy secure 

quantum cryptography based on the Deutsch-
Jozsa algorithm is proposed [29]. The relation 

between quantum computer and quantum secret 

sharing is discussed [30]. 

In this paper, we investigate the relation 

between quantum communication and Simon’s 

algorithm. 

SIMON’S ALGORITHM 

In this section, we review Simon’s algorithm. 
Suppose 

f: {0, 1}
N
 → {0, 1}

N
                                       (1) 

is a function with a N-bit domain and a N-bit 
range. We assume the following case 

f(x) = f(x ⊕ s), ∀x. 

x ⊕ s = (x1 ⊕ s1, x2 ⊕ s2, ..., xN ⊕ sN).          (2) 

Simon’s algorithm combines quantum 
parallelism with a property of quantum 

mechanics known as interference. 

Let us follow the quantum states through 
Simon’s algorithm. The input state is 

|ψ) = |0)⊗
N
|0).                                                  (3) 

After the Hadamard transformation on the first 
N-bit state we have 
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|ψ1) = x{0,1}
N
 |x/√) 2

N 
|0)                                (4) 

Next, the function f is evaluated (by Bob) using 

Uf : |x, y) → |x, y ⊕ f(x)),                               (5) 

giving 

|ψ2) =x √|x)/2
N
 |f(x)).                                       (6) 

We have 

|ψ3) = x |x⊕ s)/√2
N
 |f(x))                                 (7) 

by using f(x) = f(x ⊕ s). Thus, 

|ψ4) = ½ (|ψ2) + |ψ3)) 

       = ∈x |x) + |x ⊕ s)/√2
N+2

 |f(x)).                 (8) 

In what follows, we derive the result of the 

Hadamard transformation of |x) + |x ⊕ s). We 

have the very useful equation 

H⊗N
|x) = ∈z(−1)

x·z
 |z)/√2

N
.                              (9) 

And we have 

H⊗N
|x ⊕ s) = ∈z(−1)

z·(x⊕s)
 |z)/√2N,              (10) 

Thus, 

H⊗N
(|x) + |x ⊕ s)) 

= ∈z(−1)
x·z+z·(x⊕s)

|z)/√2
N
 

= ∈z [(−1)
x·z

(1 + (−1)
z·s

)]|z)/√2N,                  (11) 

Therefore, if Alice measures |z) then 

z · s = 0.                                                        (12) 

And thus, if Alice measures |z1),|z2),...,|zN) she 
gets the s. 

QUANTUM COMMUNICATION BASED ON 

SIMON’S ALGORITHM 

We study quantum communication based on 

Simon’s algorithm. 

First, Alice and Bob have promised to use a 

function f such as f(x) = f(x ⊕ s) for all x. Alice 

does not know s. Bob knows s. Alice’s goal is to 

determine with certainty what s Bob has chosen. 

Alice prepares suitable N +1 partite uncorrelated 

state, performs the Hadamard transformation to 

the state, and sends the output state to Bob. And 

Bob performs Simon’s algorithm and inputs the 

information of the s into the final state. Alice 

asks him what state is it O(N) times. Alice 

measures the final state and she knows the s. If 

the s is learned by Alice, Alice and Bob share N 

bits of information, by O(N)-communication 

with each other. In the classical case, Alice 

needs at least O(√2
N
)-communication with Bob 

to get the s. 

• First Alice prepares the qubits in (4) and 

sends the N + 1 qubits to Bob. 

• Next, Bob picks N bits “s” and Bob applies 

Uf Eq. (5) evolving the N + 1 qubits to Eq. 

(6). He then sends the N qubit to Alice. 

• Finally, Alice applies the Hadamard 

transformation to each of the first N qubits 

and measures it O(N) times. She learns s. 

Alice and Bob now share N bits of 
information. 

• In the classical case (without this quantum 

computing), Alice needs at least O(√2
N
)-

communication with Bob to get the s. 

We have shown quantum communication 

overcomes classical communication by a factor 
of O(√2N/N) in Simon’s algorithm case. 

CONCLUSIONS 

In conclusion, we have discussed quantum 

communication based on mimon’s algorithm. 

Alice and Bob have promised to use a function f 

such as f(x) = f(x⊕s) for all x. Alice does not 

have known s. Bob has known s. Alice’s goal 

has been to determine with certainty what s Bob 

has chosen. If the s has been learned by Alice, 

Alice and Bob have shared N bits of 

information, by O(N)- communication with each 

other. In the classical case, Alice has needed at 

least O(√2N)-communication with Bob to get 

the s. This has shown quantum communication 

overcomes classical communication by a factor 

of O(√2
N
/N) in Simon’s algorithm case. 
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