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INTRODUCTION 

In recent years, geophysicists are increasingly 

attracted to the heterogeneity of the Earth's 

interior. This interest is explained by the fact 

that the study of in homogeneities sheds light on 

the geodynamic processes occurring in the crust 

and upper mantle, clarifies some problems of 

geological evolution of the Earth. Thus, the 

problems associated with the identification of in 

homogeneities, with the definition of their sizes 

and physical characteristics, are very important 

and relevant. Although for these purposes 

geophysicists use such different approaches as 

gravity prospecting, electromagnetic methods, 

study of electrical conductivity, etc., the seismic 

method is perhaps the most direct and gives the 

least doubtful results in interpreting. 

A comprehensive analysis of the problems of 

seismic macro defectoscopy is necessary for 

solving problems of practical importance, such 

as the investigation of the Earth's core [1], the 

search for magmatic volcano foci [2], ore bodies 

[3], etc. Recently, experimental work on the 

propagation of ultrasonic waves in static models 

of elastic media containing foreign inclusions 

and fractured zones has been intensively carried 

out [4]. The ideal elastic body has no losses 

[5,6,7,8,9]. Even if the equation is linear with 

respect to stress and strain, the presence of time 

derivatives is always associated with dissipation. As 

a result, with an alternating voltage there is a 

hysteresis effect. This means that in the 

frequency range in which attenuation has an 

appreciable magnitude, the strain will lag behind 

the voltage. The presence of only a nonlinear 

connection between stress and deformation 

(without time derivatives in the equation) causes 

two effects. Such a connection, firstly, leads to 

the interaction of the elastic wave under 

consideration with other waves (for example, 

with thermal vibrations) and as a result there is a 

redistribution of energy between the waves. 

Secondly, the considered wave will generate 

higher harmonics, transferring their energy to 

them. In both cases, the interaction depends on 

the strain amplitude. The nonlinear relationship 

between stress and strain in the presence of time 

derivatives also leads to damping, which depends 

on the strain amplitude. In addition, the study of 

in homogeneities is of great interest for the study of 

an important techno physical phenomenon-the 

behavior of the source of the prepared earthquake. 

Now among seismologists the concept of a seismic 

shocks preparation zone is widely accepted, as areas 

with elastically denser characteristics that change 

as a result of tectonic movements. From a 

mechanical point of view, this corresponds to an 

inhomogeneity with the velocities of the 

longitudinal and transverse waves that are 
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insignificantly altered with respect to the 

external elastic medium, and possibly also by 

the density. Any inhomogeneity, along with its 

environment, must possess, like any elastic 

mechanical system, some spectrum of natural 

frequencies. Since the oscillations of the 

inclusion and the surrounding medium are 

interrelated, damping of the oscillations due to 

the emission of elastic waves takes place and, 

consequently, the natural frequencies will be 

complex. Therefore, for practical purposes of 

identifying possible resonance peaks on the 

spectral curve and establishing their connection 

with the corresponding in homogeneities, it is 

very important to know the natural vibration 

frequencies of elastic inclusions in an infinite 

elastic medium [10]. From the physical point of 

view, the damping in an ideal elastic medium is 

explained by the radiation of energy excited by 

the natural vibrations due to divergent elastic 

waves. The behavior of complex Eigen 

frequencies depending on the geometric and 

physic mechanical parameters of the system is 

investigated. The environment of spherical 

bodies is considered as elastic, viscoelastic and 

multicomponent. Interest in the study of the 

natural frequencies of the elastic inclusion 

system is also due to the following circumstance. 

When the inhomogeneity is transmitted through 

seismic waves or from weak earthquakes or 

from pulsed artificial sources such as pneumatic 

emitters, the scattering problem must be solved 

in a non-stationary formulation. Such a body is 

characterized by a linear single-valued relationship 

between stress and strain throughout the entire 

period of the alternating voltage. Hence it 

follows that stress and deformation are always 

in phase. The energy dissipation of an elastic 

wave will occur if the stress and strain are not 

connected by an unambiguous dependence 

during the period of oscillations. The absence of 

such an unambiguous relationship between 

stress and deformation arises when temporal 

derivatives appear in the equation connecting 

them. As is known, in this case for the calculation 

of the wave field the stationary solution should be 

integrated in frequency together with the 

spectrum of the given incident pulse. Generally 

speaking, the resulting integral can be calculated 

by any direct numerical method. In some cases, 

however, preference should be given to the 

integration method by using the theory of 

residues in the form of an expansion in the poles 

of the integrand, since it is this method that can 

reveal a number of useful physical features of 

the diffraction process. We note that the poles of 

interest to us coincide with the roots of the 

Eigen frequency equation and, therefore, in 

order to be able to deal with the problems of non 

stationary diffraction of elastic waves in the 

future, we need a careful study of the behavior 

of the roots of the frequency equations, depending 

on the ratio of the elastic density parameters of the 

medium and the inclusion. In this paper we 

consider oscillations of spherical bodies in a 

deformed medium [11, 12]. The obtained 

numerous results are compared on a computer. A 

piecewise homogeneous mechanical system is 

regarded as dissipative homogeneous and 

inhomogeneous.  

INVESTIGATION OF THE MECHANISMS OF 

ENERGY LOSSES IN ELASTIC SPHERICAL 

BODIES IN AN ELASTIC MEDIUM 

To explain the mechanisms of energy loss, we 

consider the particular problem of the passage of 

waves of large length in an elastic medium 

containing a small volume fraction of hard 

spherical inclusions. The generalized motion for 

wave motion in an elastic medium can be 

written in spherical coordinates for a harmonic 

periodic wave with an angular frequency   in 

the form of  tieUU 
0



    where 0



U - a function 

of only spatial coordinates, which can be 

represented in the form [13] 
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Potentials  φ and ψ satisfy the equations 
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е and t - respectively, the lengths of longitudinal 

and transverse waves. 

The incident longitudinal wave is defined as 

follows 
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where 0 – amplitude of incident waves; l – 

velocity of propagation of longitudinal waves;  

- frequency. The expression of the reflected 

wave through the displacement potentials can be 

written in the form 
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Here t – shear wave velocity; hn (r), hn (r) – 

spherical Bessel functions; Pn(cos) – Legendre 

polynomials, Аn and Rn coefficients. When 

calculating the Legendre function n>>1 the 

asymptotic formulas from work [14,15] 
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Coefficients Аn and Bn must be determined from 

the boundary conditions on the surface of the 

rigid sphere, i.e. from the requirement of 

continuity of displacements: 

Ur = U(t) cos; U = U(t) sin,            (4) 

 where U(t) – moving the environment. The 

stress on the surface of the sphere must be 

related to the equation of its motion as follows: 
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Where a - is the radius and n – the density of a 

spherical switch-off. The movement of the 

sphere of the problem under consideration must 

be a harmonious one:  

  iwtUetU  . 

Under the condition of long wavelengths (1), (2) 

and (3), the acting external force is expressed as 

follows:  
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where m – density surrounding a particle of an 

elastic medium; V0 – inclusion volume; V( )–

switching motion;   - some constant number 
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Now let us turn to the case b >> m, those. 

When the density of the inclusion material is 

much greater than the density of the surrounding 

medium. Under this condition, the last two 

terms can be neglected  
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Substituting (6) into the equation of motion (5) 

and writing the result in terms of time 

derivatives, we obtain  
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The last term in (7) characterizes the elastic 

energy, similar to the spring energy, and the 

velocity terms describe the phenomenon of 

energy dissipation because of the scattering of 

wave energy. 
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The first term in (8) characterizes the 

attenuation coefficient, and the second term 

describes the natural frequencies. To determine 

the damping in the first place, it is necessary to 

determine the scattering coefficient. Scattering 

is the ratio of the total energy considered per 

unit time to the energy transported by the 

incident wave per unit time through a unit area 

perpendicular to the propagation direction [13]. 

Then the expression for the scattering cross 

section is given by the formulas, the expression 

for the energy dissipation rate can be 

represented in the form: 
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where   UU rrrr ,,,, - respectively, 

the components of the stress and displacement 

tensor. Attenuation for scattering by mutually 

independent centers is 

,
2

1
0 n

            

where  - concentration of scattering centers; 

-scattering for a single scattering center. Let 

us consider an infinite isotropic elastic medium 

in which an elastic medium is enclosed, from a 

material different from the surrounding medium. 

The environment and the sphere are in a state of 

periodic motion, and far from the sphere. This 

motion is the propagation of a monochromatic 

flat longitudinal wave   
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At any point in the medium, the motion is 

assumed to consist of the sum of the fields of 

this plane longitudinal wave and the field of 

spherical waves due to the presence of a sphere. 
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These wave fields will be called respectively 

incident and scattered waves. 

When considering the motion of an elastic 

medium, one can speak of mechanical energy, 

which is carried by a propagating wave. The 

scattering coefficient expresses the relationship 

between the energies of the incident and 

scattered waves in a sphere containing the 

scattering center. Thus, the scattering coefficient 

is expressed in terms of the characteristics of the 

incident and scattered waves. The incident wave 

is given by the conditions of motion and the 

corresponding boundary conditions. The 

equation of motion for the displacement U in an 

isotropic elastic medium has the form (1). A 

wave in the environment, as already 

It was noted that the sum of the incident and 

scattered waves: 

si UUU 0                     (9) 

Where the subscripts refer respectively to the 

incident and scattered waves. Equations (1) and 

(9) are linear, so for a region outside the sphere
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zero, since a purely longitudinal wave is 

considered. With in the scheme 
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index 2 refers to the material from which the 

sphere consists, and the index q- to the wave 

inside the sphere of expression differ by the 

factor  from the expressions used 

in (11). The multiplier is introduced in order that 

the coefficients Am, Bm, Cm, Dm were 

dimensionless, and also for some simplification 

of the subsequent equations. 

When choosing the form, it was taken into 

account that for large r the solution should be of 

the form of a simple harmonic and spherical 

wave. Let us write the incident wave in the form 
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As a result, a wave outside the sphere is 

represented as follows: 
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Coefficients Am, Bm, Cm and Dm must be 

determined from the boundary conditions (4). 

Expression (13) and (14) can be used by 

calculating the displacements and voltages from 

the potentials ψ  and  π. 

From the equation, bearing in mind that φ  and 

ψ does not depend on φ, we get 
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The stresses in an isotropic elastic medium in 

Cartesian coordinates are equal to 
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For the scattered wave, φ and ψ are expressed 

by equations (6) and (16). Substituting these 

expressions in (14) and using (16), we obtain 

that the energy flux of the scattered wave 
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through a spherical surface with a radius greater 

than the radius of the scattering center 
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From (8) for the scattering cross section we 

obtain 
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Since the Am and Bm dimensionless quantities, 

the scattering coefficient has the dimension of 

the area, as it should be, by definition. The 

dimensionless scattering coefficient has the 

following form  

2a
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In this way, N  is defined as the ratio of the 

total energy flux in the scattered wave to the 

energy flux in the incident wave and has the 

following form 
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Below is a calculation of this value for two 

cases: an isotropic elastic sphere and a spherical 

cavity in an elastic medium. 

ELASTIC SPHERE 

The boundary conditions are continuity of 

stresses and displacements on the boundary, ie 

the following relations are satisfied: 
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The index e denotes coefficients related to the 

elastic sphere Setting m = 0, we find from (19) 

that 
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For m> 0, the exact analytic solution of the 

system of equations (19) turns out to be rather 

complicated, and it is practically better to solve 

it numerically. Equations (19) are generally 

complex and equivalent to the system of eight 

real linear equations. Introduction the notation
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where x(m)- real values, it is possible to rewrite 

(19) in the following form: 
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When 1la  we can obtain an approximate 

expression for the scattering coefficient, 

neglecting terms of more than second order in  

к1a in the expansion in a series of functions of 

Bessel and Hankel. Then  
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Expression (22) is an approximation of the 

Rayleigh formula.  

Spherical cavity. In this case there is no wave 

inside the sphere, so that q  and 0q . 

Therefore, it is necessary to determine only two 

groups of coefficients {Am} and {Bm}, i.e. only 

two boundary conditions are necessary. 

We require that the stress components be 

continuous at the boundary for r=a 
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These conditions lead to the following equations 
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The index denotes coefficients related to the 

cavity. Hence we obtain 
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Expressions for Асо  has the form 
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From a comparison of this expression with (20) 

it follows that the case of a spherical cavity can 

be obtained from the case of an elastic sphere, 

(22) 0Е .  

Neglecting the terms in the quadratic 
 
 in the 

expansion of spherical Bessel functions, we 

arrive at the Rayleigh approximation for  
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 It is easy to see that both for the sphere and for 

the cavity δ is expressed only in terms of the 

velocities of the longitudinal and transverse 

waves. The expression for gi through a bulk 
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In the Rayleigh approximation 1la  The 

scattering coefficient for transverse waves in the 

case of an elastic sphere is given by the formula
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as for longitudinal waves, scattering is 

proportional to the fourth power of the 

frequency, an analogous frequency dependence 

in the Rayleigh approximation is obtained also 

in the scattering of transverse waves on the 

cavity.  

SUMMATION OF SERIES 

When calculating the scattering coefficient from 

formula (14), the summation is carried out until 

the ratio of the current term to the current partial 

sum becomes less 10-10, The convergence of the 

series (14) is given by numerical experiments. 

In calculating the scattering cross sections for 

the elastic sphere and for the spherical cavity, 

according to Eq. (22), the Roel approximation 

was also calculate. For ка<<1 expression (22) 

should give the same result as these 

approximations. 

Table1. Error in determining the frequency and damping coefficients for different numbers of rows. 

Inclusions in the environment   Ошибка, %  Число членов 

 

Germanium in aluminum 

1.0 0,46321 1 4 

5.0 2,86653 0,5 11 

10.0 3,51241 0,5 16 

 

Aluminum in germanium 

1.0 0,21235 1,8 4 

5.0 1,24673 0,7 11 

10.0 2,323573 0,5 16 
     

For complex roots, Mueller's method of I. 

Barstow simplifies calculations and provides 

faster convergence than Newton's method and 

Barstow simplifies calculations and provides 

more if the roots are close to each other. Table 1 

shows examples of errors determined by the 

formula and the necessary numbers of terms in 

the series. It is seen that to calculate the 

damping factor and the natural frequencies it is 

necessary to take 11-16 terms of the series. In 

this case, the rounding error is 1% (

02,0/ 0 m
; 5,0C ; а=1; 2. 50/ 0 m

; 

5,0C ; а=1).  

The main conclusions of the paper are as 

follows: 

 A theory and methods for calculating the 

complex natural frequencies of oscillations of 

an elastic spherical inhomogeneity in an elastic 

medium are constructed. The formulation of the 

problem is proposed for the natural oscillations 

of cylindrical bodies in a deformed medium. 

The task is to find those 
iR i   ( R  

- real and  i  - imaginary parts of complex 

Eigen frequencies) for which the system of 

equations of motion and the truncated radiation 

conditions have a nonzero solution in the class 

of infinitely differentiable functions. It is shown 

that the problem has a discrete spectrum. 

 Detailed numerical calculations of natural 

frequencies and Q-factors for the radial and 

al
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first three vibration numbers of the torsion 

and spheroidal classes are performed. The 

case was considered when the elastic density 

characteristics of the inclusion and the host 

medium differ not too strongly. 

 The differential and total scattering cross 

sections for various low-contrast inclusions 

are calculated. It is shown that in the region 

close to the propagation direction of the 

incident wave, the scattering is determined 

mainly by amplitude functions. 

 The numerical results obtained for plane 

mechanical systems in a particular case are 

compared with known values. In short waves 

)5,0/( h  the results differ to 10-15%, and 

in long waves )5,0/( h до 25% 
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