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INTRODUCTION 

Layered structures are used as elements of the 

hulls of aircraft and space vehicles, building 

panels, electronic boards, engineering elements, 

and other vibrations of three-layer bodies in a 

dissipative homogeneous case, was considered 

in [1,2,3,4]. 

In the framework of the dynamic theory of 

viscoelasticity, oscillations of a three-layer plate 

(or shells) interacting with elastic (viscoelastic) 

Winkler and Pasternak bases were investigated 

[5,6,7]. 

Mathematical formulation of the problem of 

oscillations of dissipative-inhomogeneous 

layered plates and shells interacting with the 

medium. 

We consider oscillations of dissipative-

inhomogeneous three-layer (or two-layer) plates 

and shells interacting with the medium (Fig. 1). 

In thin isotropic viscoelastic bearing layers of 

thickness kh  the Kirchhoff-Love hypotheses are 

applied in a relatively thick aggregate ( ahp 2 ). 

Exact relationships of the theory of elasticity are 

valid for it. On the boundaries between layers, the 

continuity conditions of displacements are used. 

Deformations are small. For the requested functions 

are accepted  
kku  , - tangential displacements 

and deflections of the points of the middle 

surface of the bearing layers. The equations of 

motion of a mechanical system, taking into 

account the boundary conditions, are obtained 

on the basis of the principle of possible 

displacements:   

0 WIF AAA  ,                 (1) 

where   FA - variation of external forces: 

 














































 



1 2

0 0

2

1

2

1

1

1

33

1

))()1(1()()1(1(

)(
2

)1(
)(l l

k

k

k

k

k

kk

r

kkk

k
kk

r

k

hckhck

Wqq
h

uqq
A






2121 dxdxHH
 

WA - variations in the work of internal 

viscoelastic forces: 
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 IA - variation of the inertia forces: 
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Here  l - linear dimension of a plate or shell in the 

direction of the axis )2,1( x  ;  kH , - The 

Lame coefficients and the principal curvature of the 

middle surface for shells, 
kk qq 3 - distribution of 

external loads applied to the outer surfaces of the 

carrier layers; k  - density. 

ABSTRACT 

The destabilizing effect of vibration significantly increases during the resonance oscillations of the elements 

of engineering constructions. The amplitudes of displacement, velocity, and acceleration are greatly 
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On the boundaries with rigid attachment of the 

contact, conditions:  

)2,1;,0(,01121   kLxwwuu kkkk

After the corresponding transformations from 

the variation equation (1), we obtain six equations 

of motion for a three-layer viscoelastic plate and a 

shell of revolution associated with an elastic 

medium ( 3,2,1;2,1  ik ). Stresses and strains 

in the layers of a three-layer lamellar (or 

cylindrical layer) are connected by Hooke's law: 
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where 
ks - deviatorial, 

kk  , - Ball parts of 

stress and strain tensors in the k-th layer, 
kG , kK - 

instantaneous shear and volume strain modules,  

)('  tR k
, )('  tR k

-respectively, the relaxation 

nucleus. The distributed load is applied to the outer 

surfaces of the carrier layers 
kq1  and the reaction of 

the medium [8] 
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where  
kw - deflection, 

kk 0 - coefficient of 

instantaneous stiffness of the environment, 

)( tRk - relaxation core.    

 

Fig1. Calculation scheme of a three-layer plate on an elastic base 

The resolving equations in the displacements for 

the system under consideration follow from the 

equations of motion (1), after expressing the 

internal forces through (2) the quantities 
mm wu ,  and accounting for the reaction of the 

base  
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system of partial differential equations 

describing the forced transverse vibrations of a 

circular three-layer plate connected with an 

elastic inertial-free base, without taking into 

account the compression and inertia of the 

normal rotation in the layers, is derived from the 

variation principle, taking into account the 

variation of inertia forces, in the axisymmetric 

case has the form 
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where  

 323322110 ,; LLhhhM   
differential 

operators;  

ia - coefficients,  
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kk KG ,  modules of shear and volume 

deformation of the material of the k-th layer. 

The task of defining functions 

),,(),,(),,( trwtrtru   is closed by adjoining (1) 

boundary and initial conditions: 

);()0,();()0,( rgrwrfrw   Here mk - 

Kronecker symbols, coefficients 
lm

ijka    depend on 

the rigidity of the shell and plate, 
m

iqL - external load 

parameter, (m=1,2), 
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The system of integro-differential equations of 

motion in partial derivatives (3) is linear. To 

obtain the solution, we use the Bubnov-Galerkin 

method. Then we obtain the integro-differential 

equation: 

           )())()((
0

tQdTtRTPKTМ

t

   ,    (4) 

where  М , PK , )( tR  - quadratic positive 

definite matrices,  T
,
 )(tQ  vector of a column 

of unknown displacements and external loads. 

When solving the system of integro-differential 

equations (4), the freezing method is applied, as 

was done in the first and second chapters. Then, 

instead of a system of integro-differential 

equations, we obtain a system of second-order 

differential equations with complex coefficients: 

       )(tQTKPTМ 
     (5) 

We consider the intrinsic and forced vibrations of 

the above constructions. An algorithm and program 

for studying a mechanical system with a finite 

number of degrees of freedom and a system with 

distributed parameters on the basis of the Muller, 

Gauss methods, the method of the orthogonal 

Godunov run, the method, and the averaging 

method 
[9].  

Algorithm for determining the frequency 

equation for multilayer plate and cylindrical 

bodies 

When investigating free oscillations, the 

solution is sought in the form: 
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(6) 

where 
k

mn ,
k

mn3 ,
k

qlmn
 

и ,  - complex 

amplitude and complex frequency of 

oscillations. Substituting expressions (6) into 

system (5), we arrive at a complex generalized 

eigenvalue problem: 

      0)( 2  AМPK      (7) 

When studying the processes of damped 

oscillations in elastic layer-homogeneous media 

with plane-parallel interfaces, it is first necessary to 

determine the frequency characteristics of these 

oscillations. Frequency characteristics are complex 

natural frequencies IR i   and the 

corresponding proper forms. Here I  describes 

the damping of the oscillations in time. It is 

known that the quantities   are related to the 

value of the root of the frequency equation  

( ,  )0,                                    

where   - complex frequency;  - physical - 

mechanical or geometric parameters of structures. 

Thus, in order to be able to calculate the 

frequency characteristics, it is necessary to carry 

out a qualitative investigation of the roots of 

equation (7) at points of the complex plane, and 

also to develop a method for their numerical 

determination. A qualitative investigation of the 

roots of the frequency equation was carried out 

in [10]. 

When solving problems of the frequency 

equation with complex input coefficients and 

roots, numerical methods are applied. Solving 

frequency equations with complex roots, which 

are often complex transcendental equations, is 

difficult even in the case of computers. 

Moreover, it is necessary to take into account 

that the problem must be repeated at different 

constant frequency values to obtain the phase 

velocity, or the wavelength. Three methods can 

be used to solve the frequency transcendental 

equations: 

A) solution of the system of two transcendental 

equations; 

B) the direct definition of complex roots by the 

quadratic interpolation method, or by another 

similar iterative method (for example, Muller's 

methods); 

c) the approximate solution of the frequency 

equation by the small parameter method. The 

frequency equation with complex roots in 

special cases is reduced to the system of two 
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transcendental equations by separating the real 

and imaginary parts. Of course, finding a pair of 

characteristic values, at which both equations 

are simultaneously satisfied, the process is 

difficult, but sometimes leads to a goal. In [11], 

the idea of a small parameter method was used 

to solve the frequency equation of stress waves 

propagating in a viscoelastic layer on an elastic 

half-space, the material of the layer corresponding 

to a Voigt-type rheological model. The attenuation 

and viscosity parameters are taken here as small 

parameters. But here we obtain a frequency 

equation for the elastic case, by means of which 

it is impossible to obtain dispersion regularities 

in a viscoelastic system. 

More expedient is the direct definition of complex 

roots by Muller's methods. For complex roots, 

Muller's method simplifies calculations and 

provides faster convergence than the Barstow 

method if the roots are close to each other [11]. 

The Muller method uses quadratic interpolation, 

which leads to iteration of the form: 

signB
CA jj4B

2C
)  Z-(Z -  Z Z

2

jj

j1]-[j [j]j]][1][j  , 

where   Аj  = gi fj – gi (1+ gi)
2
fj-1 + gi fj-2 ;  

                      Bj = (2gi+1) fj
2

 – (1+ gi)
2
fj-1 + gi f j-2 ; 

             Cj  =(gi+1) fj ; fj =f(z
([j] 

);   

             gj = (z
[j
-z

[j-1]
)/(z

[j-1]
- z

[j-2]
);   j=0,1,2 . 

To start the solution, we can put z
[0] 

= z 00;  z
[1] 

= z 01;   z
[2] 

= z 02;  z00, z01, z02 – solution of 

elastic problems. Based on the latest modification, 

an algorithm was constructed to determine the 

dispersion characteristics. Elements of the 

dispersion equation consists of special Hankel 

functions of the 1st and 2nd kind of the n-th 

order. As is known, Hankel functions are 

expressed in terms of Bessel functions of the 

first and second kind of the nth order  Нп
(1),(2)

(кr) 

= Iп (кr)± iYп(кr).      

The elements of the dispersion equation are 

expressed in terms of the special Bessel and 

Hankel functions of the first and second kind of the 

n-th order. Now let us consider the computations 

of these functions on a computer. The Bessel 

and Neumann functions of the nth order can be 

determined by an infinite series: 
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If n = 0 and 1 are known, we can calculate the 

Bessel and Neumann functions of any order 

from the following recurrence relations 

(Fn=Jn;Yn): 

),()(
2

)( 11 zFzF
z

zF nnn  
  где z – complex quantity. 
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For the series above, the remainder does not 

exceed the first discarded term. If you select  

U0(ρ, ф) and  V0(ρ, ф) by 26 series members 

(polynomials of degree 50 with respect to r), 

then the error in modulus will be less than 

 
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!26
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 р  the maximum value of which (for   

<10) is approximately equal to 1.5 10
-17. 

To calculate the frequencies, as well as the 

attenuation coefficients, a program was 

developed in the ++ CI language. The roots of 

equation (7), which are functions of the 

parameter   , were determined by the Mueller 

method according to the formula  
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the process of obtaining iterations was 

terminated when inequality  ,1   ll
 

where  – an arbitrary sufficiently small 

number. As the zeroth approximation, at the first 

stage of the computations, the solutions of the 

equation were chosen for sufficiently small . 

Numerical results of natural oscillations of 

layered bodies 

We denote by (4.7b)  
2  ,and reversing the 

matrix  М , we pass from (7) to the standard 

Eigen value problem
:
           PKМRAAR

1
,


  . 

By the frequencies found
2 , the Eigen vectors

 A . 
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Fig2. Calculation scheme of a double-layer cylinder 

If the lamellar or cylindrical layered bodies are 

connected to the bases (or elastic medium) 

through the models of the Wine cler, then the 

arising forces assume the following form 

(without taking into account the inertial inertia) 

0rq k w
            (8)

 

We consider the vibrations of a three-layer plate 

connected with the elastic inertial base of the 

Vin Kler:  

wmwkq fr
 0
,       (9) 

where fm - mass inertial coefficient of elastic 

resistance. 

If the viscous properties of the interaction 

between the system and the base are taken into 

account, then (9) takes the following form:  














 



 dwtRwk
t

w
mq

t

kfr )()(002

2

   .  (10) 

Unlike the Vin Kler model, the Pasternak 

inertial model takes into account the shear 

resistance in the external environment: 

wwmwkq ffr  
0   ,   (11) 

where   f - shear rate,  - the Laplace 

operator. If the viscous properties of the 

interaction between the system and the base are 

taken into account, then (11) takes the following 

form:  























 



 dwtRwdwtRwk
t

w
mq

t

fff

t

kfr )()()()(002

2
 ,  (12) 

where 00k , ff - instantaneous compression and 

shear ratios; kR , fR - respectively, the 

relaxation nuclei. 

Numerical results  are obtained for a freely 

supported circular three-layer cylindrical shell 

(D16T-fluoroplastic) with parameters: 

1;02.0;025.021  Rchh
,
  located in 

the inertial environment of the Wine Clerus 

(Figure 3). As the relaxation nucleus of a 

viscoelastic material, we take a three-parameter 

core  









1t

Ae
tR

t

 Rizhanitsena-Koltunova 

[12], which has a weak singularity, where 

,,A - material parameters [12]. We take the 

following parameters: 

1,0;05,0;048,0  A , using the 

complex representation for the elastic modulus 

described earlier. The roots of the frequency 

equation are found by the Mueller method, at 

each iteration of the Muller method the Gauss 

method is used with the separation of the main 

element.  

Thus, the solution of equation (7) does not 

require the disclosure of the determinant. As the 

initial approximation, we choose the natural 

frequencies of the elastic system. In the figures  

3 and 4  (- RLRL 9;5.1  ) the change in the 

real (R,k) and imaginary (I,k) (k=1,2,3)   parts 

of the complex natural frequency depending on 

the rigidity coefficient к0   viscoelastic medium. 

The presence of an external medium practically 

does not affect the frequencies of torsional 

oscillations 012 .   
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Fig3. Change in real parts of complex frequencies depending on the interaction coefficient. 

  R,11.  2. R,02. 3. R,03.  4. I,11.  5. I,02. 6. I,03  

With decreasing rigidity, the frequency 011  у 

decreases to zero. Frequency of torsional 

oscillations 013  is limited (constant), for long 

and hard environments it increases sharply. The 

results of calculations for elastic mechanical 

systems, when the rheological properties of 

materials are not taken into account, the 

elements of the mechanical system are 

compared with the results obtained by E. 

Starovoitov [13, 14]. Results differ with a 

difference of up to 10%. 

 

Fig4. Change in real parts of complex frequencies as a function of the interaction coefficient. 

 R,11.  2. R,02. 3. R,03.  4. I,11.  5. I,02. 6. I,03 

Figures 5 and 6 show the change in real and 

imaginary parts of frequencies depending on the 

thickness of the core (middle layer) for different 

lengths of a three-layer cylinder 

2.5 ; 7.5L R L R  . It can be seen from the figure 

that with an increase in the Winkler interaction 

coefficient within 6

010 10k   
The real and 

imaginary parts of the eigenfrequencies increase 

monotonically. Small value 00 10k 
 

the 

interaction coefficient of the Vin Cler almost does 

not affect the behavior of the natural frequencies.  

It can be seen from the figures that as the 

thickness of the aggregate increases, the 

corresponding frequencies increase and approach 

asymptotics. The behavior of the real and 

imaginary parts of the frequency is almost the 

same. The natural frequencies (real and 

imaginary parts) when accounting for the 

Winkler base increase almost 20%. The account of 

inertial terms reduces the frequencies depending on 

the  fm
 
, With an increase in the inertia force of the 

frequency decreases and approaches the asymptote.  

 
Fig5. Change of real and imaginary parts of the natural frequencies, depending on the thickness of the middle 

(filler) layer. 
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 real frequency parts, for Winkler inertial-free 

media (ωRm10); 

 real parts of the frequency, for inertial-free 

media of Pasternak (ωRm10);    

 imaginary parts of the frequency, for the inertial-

free Winkler media (ωIm10
-2
); 

 imaginary parts of the frequency, for the inertial-

free media of Pasternak (ωIm10
-2
); 

 
Fig6. Change of real and imaginary parts of the natural frequencies, depending on the thickness of the average 

(filler) layer. 

 real parts of the frequency, for inertial 

corresponding Winkler media (ωRm10);   

 real parts of the frequency, for the inertial 

corresponding media of Pasternak (ωRm10);     

 maginary parts of the frequency, for inertial 

corresponding Winkler media (ωIm10
-2

);  

 imaginary parts of the frequency, for the 

inertial corresponding media of Pasternak 

(ωIm10); 

An increase in the thickness of the aggregate 

causes an increase in the real and imaginary part 

of the complex frequencies of the shell three-

layer systems. At the same time, the results for 

the corresponding models of Winkler and 

Pasternak (both with and without inertia of the 

external environment) practically coincide. 

Table 1 shows for each index m  four 

frequencies mp  ( RRLkp 9,5,1,0,4......1 0  ).  

Table1: Real parts of the frequencies of the three-layer shell 

р/m L=2R L=10R 

0 1 2   1 2 

1 0 2.822 3.021 0 2.838 2.774 

2 3.602 6.068 11.433 3.602 3.655 7.859 

3 4.478 7.233 12.203 4.478 6.621 11.024 

4 5.295 8.296 15.993 5.295 7.958 14.959 
       

Let us consider two variants of the dissipative 

system. In the first variant, a homogeneous 

system is considered, i.e. all the rheological 

properties of all layers (elements of the 

mechanical system) are the same (Figure 7). 

The frequency dependence of k0 turned out to 

be the same as for a dissipative homogeneous 

system: the corresponding curves coincide with 

an accuracy of up to 5%. As for the coefficients 

of damping, their behavior has changed 

radically: the dependence ωI ~ ξ (к0 ,l and others) 

became nonmonotonic (Figure 8).  

Of particular interest for practice is the 

minimum value of the damping factor (for 

fixing  ξ) [15,16] 

δ  = min (-ω Ik ).    (13) 

Value δ  determines the damping properties as 

a whole. In the case of a homogeneous system δ 

(we shall call it the global damping coefficient) 

is determined by the imaginary part of the first 

complex natural frequency modulo.  

In the case of an inhomogeneous system, the 

imaginary parts of both the first and second 

frequencies act as the global damping 

coefficient. "Change of roles" occurs with a 

characteristic value ξ; while the real parts of the 

first and second frequencies are the closest. The 

global damping factor at the specified 

characteristic value ξ has a pronounced 

maximum.     
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Fig7. Changing the proper complex frequencies from the wave number, for  dissipatively homogeneous system. 

 

Fig8. Changing the proper complex frequencies from the wave number, for a dissipatively inhomogeneous 

system. 

The change in the parameter, on which the 

global coefficient of damping depends so 

substantially, can be achieved by varying the 

geometric dimensions or physical properties, 

thereby opening up the perspective possibility of 

effectively controlling the damping characteristics 

of dissipatively inhomogeneous viscoelastic 

systems. Such results were obtained both for the 

Koltunov-Rzhanitsin relaxation nucleus and for 

the fractional exponential core of Rabotnov. In 

(1) and (2) the following notation is adopted: 
)(n

ij — components of the stress tensor, 
)(n

i — 

displacement vector components, 

   
 n

n
nnnnn ГГЕЕ

2

21~;1
~ 


; 

     dftЭmtfГ n

t

n

nn )(,)(

2/1  





.       (14) 

Here  E, ν – instantaneous values of Young's 

modulus and Poisson's ratio,   mn, βn— 

parameters of the material. As the kernel of the 

integral operator we use the fractional 

exponential function of Rabotnov [17] 

 
  













0

2/

2/1)(

2/1
2/1

),(
j

jj

n
n

n

n
jГ

t
tmtЭm


 ,    

where  Г(j) =  dyyy j 




0

1 exp -gamma function. 

In studying the natural oscillations, we will 

investigate the properties of those modes (the 

modes are understood to mean particular solutions 

of the equations of motion in displacements that 

satisfy homogeneous boundary conditions on the 

face surfaces), which vary in time according to 

the harmonic law and satisfy the equations of 

motion (1), the equations of state (2) and 

homogeneous boundary conditions on the front 

surfaces. The results of calculations in low 

frequency regions differ up to 15%, and in high 

frequency regions - up to 60%. This difference 

is explained by the fact that, in the low-

frequency region, the change in Poisson's 

coefficients, depending on the material 

rheology, can be neglected. And in high 

frequency regions, variation of Poisson's 

coefficients, depending on the material 

rheology, cannot be neglected.    

Forced oscillations 

The system of differential equations of motion 

in the displacements (1) with the inertial basis of 

the Vin cler takes the following form  

,)(

,0)(,0)(

0

*

06533

54223212

,

,,

qwkwMwaauaL

waauaLwaauaL

r

rr









  
 (15) 

where fmMM 

0 - specific weight of the 

plate and base. The system of differential 

equations of motion in the displacements (1) 

with the inertial base of Pasternak takes the 

following form: 

,)(

,0)(

,0)(

0

*

06533

5422

3212

,

,

,

qwkwMwtwaauaL

waauaL

waauaL

fr

r

r













        (16) 
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Fig9. Change in deflection as a function of time: 1- non-inertial base; 2-inertial base. 

The solutions of systems (15) and (16) are taken 

in the form of convergent expansions in a series 

in systems of eigenfunctions: 





















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0

**

0

0

*

1

0

*

2

0

*

,)(),(,)(),(

,)(),(,)(),(

n

nn

n

nn

n

nn

n

nn

tqMtrqtTbtru

tTbtrtTtrW



     (17) 

where )(tTn  is taken in the form: 




 dqttBtAtT nn

t

n

nnnnn )())(sin(
1

)sin()cos()(
0

 

The change in the deflection as a function of 

time, of a three-layer system clamped along the 

contour fixed to the base of the Vin cler, under 

the influence of vertical harmonic loads is 

shown in Fig. 10. 

).,(,))sin()cos((),( 0 constEDtEtDqtrq kk      (18) 

 
Fig10. Change in the maximum deflection (a) and shear (b) on the basis of Pasternak under impulse loading. 

Figure 9 shows: 1- inertial-free base; 2-inertial 

base. When obtaining numerical values, the 

parameters (18) are assumed to be equal to 

unity. Numerical results show that the inertia of 

the base reduces the maximum vertical 

displacement (deflection) to 38%, and taking 

into account the rheological properties of the 

"structure-base" interaction, up to 44%. Now 

consider the oscillations of the structures with 

the inertial base Pasternak (Figure 10). 

 Figure 11 shows the change in the deflection in 

the center of the plate without taking into 

account the elasticity of the base. For the first 

curve 
3

0002, 10t k  . For the second curve 

4

00.03, 10t k 
. 

 

Figure11. Change in deflection in the center of the plate without taking into account the elasticity of the base. 

1-

3

00.02, 10t k 
 . 2-

4

00.03, 10t k 
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Table 2 compares the results of the first three 

complex of the vibration of a two-layered 

cylindrical body using a package of the 

developed algorithm [18]. It can be seen that the 

results of calculations differ to 20%.   

Damping of resonance oscillations of rod and 

tube oscillations 

To reduce the resonant vibrations, in addition to 

the methods discussed above, layers made of 

vibrating absorbing materials are also used 

(Figure 12). In this case, resonance oscillations 

can be reduced in a wide range of frequencies 

with an insignificant increase in the masses and 

overall dimensions of the structures. The 

effectiveness of the use of vibration absorbing 

materials is illustrated in Figure 12. The use of a 

board consisting of three layers of glass fiber 

reinforced plastic with squeezed thin layers of 

vibration-absorbing material (VP) sandwiched 

between them reduced resonant vibrations by a 

factor of 3 [19]. 

Table 2. A comparison of the results of the first three complex of the oscillation of a two-layer cylindrical body 

is used, using a package of the developed algorithm and the FEM.
 



0Z  


R  


I  

1 2 3 1 2 3 

0,0 

961.0

991.0
 

636.1

649.1
 

728.1

810.1
 

037.0

041.0
 

040.0

040.0
 

073.0

081.0
 

0,2 

089.1

129.1
 

809.1

831.1
 

909.1

997.1
 

046.0

050.0
 

051.0

049.0
 

107.0

115.0
 

0,4 

239.1

278.1
 

024.2

037.2
 

042.2

111.2
 

055.0

058.0
 

060.0

060.0
 

130.0

136.0
 

0,6 

420.1

459.1
 

156.2

235.2
 

180.2

285.2
 

065.0

069.0
 

181.0

160.0
 

153.0

159.0
 

0,8 

611.1

688.1
 

132.2

285.2
 

168.2

289.2
 

076.0

083.0
 

119.0

133.0
 

129.0

135.0
 

1,0 

760.1

965.1
 

816.1

906.1
 

949.1

994.1
 

082.0

097.0
 

093.0

101.0
 

111.0

108.0
 

1,2 

542.1

610.1
 

546.1

611.1
 

155.2

293.2
 

072.0

078.0
 

074.0

079.0
 

180.0

185.0
 

 
     Fig12. The calculation scheme. 

Figure 12 shows examples of the use of 

vibration absorbing materials to suppress 

resonance oscillations in structures. We seek the 

solution of the boundary value problem in the 

form:    *

i t

kq t x e   , where  xk  - complex 

waveform: IR i   - the required 

complex frequency. The problem reduces to 

solving a homogeneous algebraic equation: 

  0,  IR  .                    (19)  

For the calculations, the following values of the 

parameters of the problem: 

;0;2,0;0;01.1;3,0;4 )1()1()1()1(21  SCSC FFRR
R

R
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)2(

)1(
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)2(
2

)1(

0

)2(

)1(

0

)1(

0 




G

B

G

G

G

B  

and it was also assumed that the filler material 

behaves in an elastic manner during volume 

deformation. 
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Fig13. Dependence of the imaginary parts of the vibration frequencies of a two-layer cylinder on the interaction 

coefficient  Кw. 

 -I1; 2.- I2  ; 3.- I3. 

It can be seen from Fig. 13 that for a dissipative 

inhomogeneous system the imaginary parts of the 

complex frequency do not change monotonically 

depending on the interaction coefficient, for a 

dissipative homogeneous system such a 

dependence does not take place.  

A similar dependence is shown in the figure  14.  

 
Fig14. Dependence of the imaginary parts of the natural oscillation frequencies of a two-layer cylinder on the 

ratio of the modulus of elasticity of the filler to the elastic moduli of the shell. 

 -I1; 2.- I2  ; 3.- I3. 

At the decision of a problem both of the above-

stated variants of use of package MAPLE were 

applied (figure 13 and drawing 14). 
 

CONCLUSIONS  

 A scientifically substantiated methodology 

and algorithm for dissipative mechanical 

systems consisting of layered plates and shells is 

developed. As an example, we consider a three-

layer construction with elastic (viscoelastic) and 

inertial-free media of Wine Cler and Pasternak, 

with external dynamic effects. 

 In solving the problems of intrinsic and forced 

oscillations of a dissipative heterogeneous 

three-layer structure, some general laws for 

the natural frequencies and damping indices 

are found. A method is developed for 

calculating vibro protective devices, considered 

as elastically viscous hereditary systems. The 

method showed good agreement between the 

theoretical and experimental data and allowed to 

predict the parameters of the damping structures. 

 The analysis of theoretical and experimental 

amplitude-frequency response (amplitude-

frequency characteristic) showed satisfactory 

convergence of calculation and experiment: 

the frequency error did not exceed 15%, 

amplitude -28%. 

 It is established that the presence of rubber 

shock absorbers reduces the oscillation 

amplitude of the equipment by up to 30%.  
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