
International Journal of Emerging Engineering Research and Technology

Volume 2, Issue 2, May 2014, PP 37-42

©IJEERT www.ijeert.org 37

Sql Injection Attacks:Prevention for All Types of Attacks

Ankita Kushwah, Gajendra Singh

SSSIST, Sehore

Abstract: In today’s epoch security of web applications has increased. A review held in 2010 shows web

application vulnerabilities and SQL Injection attack ranked among top five[2]. Intruders who want to access

confidential data from data base without having access permissions uses SQL injection attack [1]. In SQLIA

adversary requests through a malicious query which shows some confidential data [2]. In research, it isalso

proved that whena network and host-level entry point is highly secured, the public interface provided by an

application is the one and only sourceof SQL injection attack. SQLIA can’t be applied without using space,

single quotes or double dashes [3]. So toprevent SQLIA, these options are taken in observation. This paper is
focused on SQLIA and its techniques and encounters the shortcoming of previous models. Previous models used

JDBC-LDAP library which did not support instances, alias and set operations (UNION and UNION ALL) [10].

If a query with injection is accepted by any database which is based on relational approach, then it will be

accepted by all databases that are based on relational approach. So this paper proposed a model which uses

two databases one relational and other hierarchical to ensure about injection in a query, compare the results by

applying tokenization technique on both databases. If the results are same, there is no injection, otherwise it is

present. The proposed model uses a tokenization technique so; query containing Alias, Instances and Set

operations can also be blocked at the entry point.

Keywords: SQLIA; Classification of SQLIA; Query Tokenization

1. INTRODUCTION

SQLIA is an attack on web-applications. SQLIA

occurs when adversary changes the logic,
semantics or syntax of an SQL query [1]. The

query which is generated dynamically based on

user input, maliciously crafted with SQL
keywords, operators, strings or literals, executes

in the database server. The aim of the intruder

for the SQLIA is to access database for which he
is unauthorized [2]. So, accessing information

beyond limitations intruder applies SQLIA in

the form of queries which are syntactically

correct [3]. The results of SQLIA are as below:

1.1. Bypass Authentication

It is a serious type of attack. Intruder can access

the sensitive information about another user and
can access the information available in his

account. This attack is applied when intruder

bypasses the validation (checking of username

and password) phase and can access the
authorized area/space of victim [4].

1.2. Confidentiality Loss

When the confidential data from the database is
extracted/ by the intruder, confidentiality is lost.

1.3. Integrity Loss

The major effect of SQLIA is integrity loss.
When intruder access the database as well as he

apply SQLIA in such a way that he can have

authority of altering the database, it has a major

impact on the integrity of the system as he can

alter the database as he thinks. It becomes
dangerous if this is done in banking web

applications, as intruder can get privilege to the

accounts also. Unwanted operations: intruder

can perform unwanted operations such as
shutting down the database, change it, upload

files or delete files from database [5].

This paper emphasizes on various aspects of
SQL Inspection. Section II shows prevention

techniques and operations in the previous work

done in this field. Section III contains proposed

solution using tokenization approach as well as
conclusion part of this paper and future research

directions to prevent SQLIA.

2. BACKGROUND AND RELATED WORK

The attacker‟s objective for using the injection

technique is lies in gaining control over the

application database. In a web based application
environment, most of the web based

applications, social web sites, banking websites,

online shopping websites works on the principle
of single entry point authentication which

requires user identity and password. A user is

identified by the system based on his identity.
This process of validation based on user name

and password, is referred as authentication. Web

architecture illustrated in Fig 1.showes general

entry point authentication process. In general

Ankita Kushwah & Gajendra Singh

International Journal of Emerging Engineering Research and Technology 38

client send a HTTP request to the web server

and web server in turn send it to the database
layer. Database end contains relational tables so

queries will be proceeding and result will be

send to the web server. So entire process is
database driven and each database contains

many tables that are why SQLIA can be easily

possible at this level.

Figure1. Web Architecture

SQL Injection is a basic attack used for mainly

two intentions: first to gain unauthorized access
to a database and second to retrieve information

from database. Function based SQL Injection

attacks are most important to notice because
these attacks do not require knowledge of the

application and can be easily automated [6].

Oracle has generally aware well against SQL

Injection attacks as there is are multiple SQL

statements that support (SQL server and

Postages SQL), a no. of executive statements

(SQL servers) and no. of INTO OUTFILE

functions (MYSQL) [7]. Also use of blind

variables in Oracle environments for

performance reasons provides strong protections

against SQL Injection attack.

There are two types of SQLIA detection:

2.1. Static Approach

This approach is also known as pre-generating

approach. Programmers follow some guidelines
for SQLIA detection during web application

development. An effective validity checking

mechanism for the input variable data is also
requires for the pre-generated method of

detecting SQLIA.

2.2. Dynamic Approach

This approach is also known a spost-generated

approach. Post-generated technique are useful

for analysis of dynamic or runtime SQL query,

generated with user input data bya web
application. Detection techniques under this

post-generated category executes before posting

a query to the database server [2, 7].

3. CLASSIFICATION OF SQLIA

SQLIA can be classified into five categories:

 Bypass Authentication

 Unauthorized Knowledge of Database

 Unauthorized Remote Execution of

Procedure

 Injected Additional Query

 Injected Union Query

3.1. Bypass Authentication

It is already discussed in Section I. Researchers

have proved that query injection can‟t be applied
without using space, single quotes or double

dashes (--). In bypass authentication, intruder

passes the query in such a way which is
syntactically true andaccess the unauthorized

data [8]. For example:

SELECT SALARY_INFO from employee
where username=‟ or 1=1 - - „andpassword=”;

This SQL statement will be passed because

1=1is always true and - - which is used for

comments, when used before any statement, the
statement is ignored. So the result of this query

allows intruder to access into user with its

privileges in the database [3].

3.2. Unauthorized Knowledge of Database

In this type of attack, intruder injects a query

which causes a syntax, or logical error intothe
database. The result of incorrect query is shown

in the form of error message generated by the

database and in many database error messages, it

contains some information regarding database
and intruder can use these details. This type of

SQLIA is as follows:

SELECT SLARY_INFO from employee where
username = „rahul‟ and password

=convert(select host from host);

This query logically and syntactically incorrect.

The error message can display some information
regarding database. Even some error messages

display the table name also.

3.3. Unauthorized Remote Execution of

Procedure

SQLIA of this type performs a task and executes

the procedures for which they are not
authorized. The intruder can access the system

and perform remote execution of procedure by

injecting queries.

Sql Injection Attacks:Prevention for All Types Of Attacks

International Journal of Emerging Engineering Research and Technology 39

For example:

SELECT SALARY_INFO from employee
where username=‟‟; SHUTDOWN; and

password =‟‟;

In above query, only SHUTDOWN operation is
performed which shuts down the database [2].

3.4. Injected Additional Query

When an additional query is injected with main
query and if main query generates Null value,

even though the second query will take place

and the additional query will harm the database.

For example:

SELECT SALARY_INFO from employee

where username=‟rahul‟ and password=‟‟; drop

table user‟;

First query generates Null because the space is

not present between „and‟ and password, but the

system executes the second query and if the
given table present in database, it will be

dropped.

3.5. Injected Union Query

 In this type of attack, the intruder injects a
query which contains set operators. In these

queries, the main query generates Null value as a

result but attached set operators data from
database. For example:

SELECT SALARY_INFO from employee

where username=‟‟ and password=‟‟ UNION

SELECT SALARY_INFO from employee
where emp_id=‟10125‟;

In above query, the first part of query generated

Null value but it allows the intruder to access the
salary information of a user having id 10125.

4. MAJOR ELEMENTS OF SQLIA

It is shown in various research papers that
SQLIA can‟t be performed without using space,

single quotes and/or double dashes. These are

the major elements of SQLIA. SQLIA is
occurred when input from a user includes SQL

keywords, so that the dynamically generated

SQL query changes theintendedfunction of the
SQLquery in the application.

When userinput typesa number, there is no need

to use single quotes in the query. In this case

SQL Injection is injected byusingspace.
Thisquery canbe done on original query.

Original Query: SELECT * from employee

where emp_id=10125;

Theinjection querycanbe of thisformusing space:

SELECT * from employeewhereemp_id=10125

or 1=1;

The injectionquery shownbelow is a query

which uses single quotes:

SELECT * from employee where emp_name =
‟rahul‟or1=1;

In this case if an employee with name rahul is

present in database, information is retrieved. But
if the name is not present, even then the query is

executed becausethestatement1=1 is always true.

The injection query may contain double dashes

(--)

SELECT * fromemployee where emp_name=

‟rahul‟;--„and SALARY_INFO>25000;

SQLIA is a prominent topic and lots of research
work has been done for the detection and

prevention of SQLIA. In [3] the author proposes

the Trans SQL model. In this model author
proposes a model for SQLIA prevention. Trans

SQL is serverside application so, it does not

changes legacy of web application. This model

uses the idea of database duplication and run
time monitoring. The proposed model is fully

automated and the result shows the effectiveness

of system. TransSQL propose to use two data
bases, one is original relational database and

another (LDAP) is copy of the first one, But data

is arranged in hierarchical form. When a query is

paused by the user, the system checks if the
query contains the injection or not. The queries

insertedin bothoriginal database and LDAP. If

result of both databases issame, it
showstheinputqueryis free frominjection,but if

resultsaredifferent,itmeans, thequery contains

injection. So thesystem shows theresult asNull.
The major shortcoming ofthis models thatitis

notapplicableforinjectionquerieswhich contain

instances, alias,UNION ad UNIONALL [11].

In [9], tokenizationmethodispropose,which is
efficientbutappliedonoriginal aswell asquery

withinjection. It isnot possible forall queries that

theiroriginalquery isalready stored. In [2], the
author proposes rule-baseddetection technique,

which isbasedonclassificationtask. For

aparticularquery, ruledictionaryis generated and
query is replaced with theserules. If another

query is present, the rules are applied in new

entry and using classification approach, identify

that new query contains the SQL injection or
not.[2] proposes, two levels of authentication:

SQL authentication and XML authentication,

and every query is passed though both systems
for checking and preventing against SQLIA.

Ankita Kushwah & Gajendra Singh

International Journal of Emerging Engineering Research and Technology 40

5. QUERY TOKENIZATION

It is a SQLIA prevention technique proposed in

[10]. The query tokenization technique is

implemented by query parser method. In this
method, the original query and query with

injections are considered differently. Figure 2

shows the overall process of tokenization.

Figure2. Tokenization Process

Tokenization is performed by detecting space,

single quotes („ „) or double dashes (- -) and all

strings before each symbol constitute of token.

Tokens are decided on the basis of spaces
between them. All the tokens are stored as an

element of the array. Two arrays resulting from

both original and a query with injection are
obtained with their lengths. If the length of both

arrays is same, there is no injection. If lengths

are different there is injection. Table 1 and Table
2 shows resulting arrays after tokenization for

query 1 and query 2 which are as follows:

Query 1: Original Query

SELECT * from Employee where emp_name=
‟Rahul‟;

Query 2: Query with Injection

SELECT * from employee where
emp_name=‟Rahul‟ or „1‟= „1‟;

Table1. Tokenization Result of Original Query

Table2. Tokenization Result of Query with Injection

0 1 2 3 4 5 6 7 8

SELE

CT *
from

Emplo

yee

Wh

ere

emp_n

ame=

Rah

ul

o

r

1 = 1

When index of table 1 and table 2 are compared

the length of both array are unequal. So, it is
sure that the second query has injection.

6. PROPOSED MODEL

SQLIA is aservertypeof web vulnerability,

which impacts badly on web applications. In this

section, a novel model for SQLIA prevention is

proposed. As mentioned in previous section,
several models are proposed for prevention of

SQLIA, butthey are not applicable for all type of

injection attacks. SQLIA prevention via double
authentication through tokenization is an

approach to control SQLIA. We propose double

authentication process on both relational and
hierarchical databases by applying tokenization

approach on both databases. This task is

performed via three steps.

Step 1: Query Forwarding

Step 2: Tokenization process on query

Step 3: Comparison of array index

Figure 3 shows the proposed architecture of
SQLIA prevention through double

authentication via tokenization by using above

three essential steps.

Figure3. Proposed Architecture

Step 1: Query Forwarding- When a query

comes from a user via user interface, the input

query is forwarded to both databases, one which
is created by relational approach and other based

on hierarchical approach.

Step 2: Tokenization process on query- the
input query is divided into various tokens on the

basis of space, single quotes and double dashes

between them. Once the tokens are decided, they

Tokenization Process

(applied on original query and query with injection)

Step-1

Convert query
into Tokens

(on the basis of

space, single
quotes and double

dashes)

Step-2

Store each token into
array

(Two arrays are created
one for original query and

another for query with
injection

Step-3

Comapre the length
of both array

(If lengths are same

their is no injection else
SQL injection is present

)

0 1 2 3 4

SELECT

* from

Employ

ee

wher

e

emp_name

=

Rah

ul

Sql Injection Attacks:Prevention for All Types Of Attacks

International Journal of Emerging Engineering Research and Technology 41

are stored in array. Tokenization process is

applied on both databases.

Step 3: Comparison of Array Index- In this

step, the array length of both the arrays are

compared. If the length of L1 and L2 are same,
there is no injection present in the query and the

query is proceed further to main database for

retrieving result. But if the lengths L1andL2are
different, then injection exists and query is not

forwarded to the database. The result is a NULL

value.

This model uses two types of databases, pone
hierarchical and other relational. The aim of

using two databases having different

representations is that when one query with
injection applied on relational database is

accepted, it can be accepted by all databases

based on relational databases and important
information can be disclosed. While using

different databases having different storage

strategies, shows different results for same

query. And if the results are different, it shows
the presence of injection.

7. COMPARISION BETWEEN EXISTING AND

PROPOSED MODEL

SQL Injection

Types

SQLIA prevention technique

Existing

TransSQL

Model

Proposed Model

(XML

Authentication +

Query

Tokenization)

1. Bypass

Authentication

Prevented
 Prevented

2. Unauthorized
Knowledge of

Database

Prevented Prevented

3.Unauthorized

Remote Execution

of Procedure

Prevented Prevented

4. Injected

Additional Query
Prevented Prevented

5. Injected Union &

Union ALL Query

Not

Prevented
 Prevented

6. Injected Alias

query

Not

Prevented
 Prevented

7. Injected Instance

query

Not

Prevented
 Prevented

Table 4 shows the comparison between existing

SQLIA prevention technique and proposed
technique on the basis of different SQL injection

type like Bypass authentication, Unauthorized

Knowledge of Database, Unauthorized Remote

Execution of Procedure , injected additional
query, Injected Union & Union ALL Query,

Injected Alias query and Injected Instance query.

Existing Trans SQL technique uses LDAP
database which may trap in some of the case like

UNION,UNION ALL etc. because the part of

SQL commands, UNION, UNION ALL are not
supported by JDBC-LDPA library[11] .

Proposed technique gives a appropriate solution

by using XML-Authentication and Tokenization

technique.

8. CONCLUSION AND FUTURE WORK

Now–a-days, when web applications have
becomepopularand many companies rely on

them, the needofsecurity of

webapplicationincreases. SQLIAisthe topmost

threat to web applications. In SQLIA,intruder
passes aninjectedquery in the system and access

the unauthorizeddata. If an injected query is

accepted by any relational database,it will be
accepted by all databases

whicharebasedonrelational approach, for

example, SQL,MySQL, MS Access. So,

ifinputquerywill be checked bytwo
differentdatabases, using differentapproaches

(relational and hierarchical approaches), then the

proper checkingof injection can be done. This
paperis focused on theSQLIA, itsclassification

and itsprevention techniques. This research

paper proposes introduction of a newsystem
whichisusedforthe preventionofSQL injection

andalso accepts andchecks thequery which

contains instances, alias, UNION or UNION

ALL, etc set operators, by applying tokenization
on hierarchical and relational databases.

REFERENCES

[1] R. Ezumalai, G. Aghila, “Combinatorial

Approach for Preventing SQL Injection

Attacks”, 2009 IEEE International Advance

Computing Conference (IACC 2009) Patiala,
India, 6-7 March 2009.

[2] Asha. N, M. Varun

Kumar,Vaidhyanathan.G of Anomaly Based

Character Distribution Models in

th,”Preventing SQL Injection Attacks”,
International Journal of Computer

Applications (0975 – 8887) Volume 52–

No.13, August 2012

[3] Mehdi Kiani, Andrew Clark and George ,

“Evaluation e Detection of SQL Injection

Attacks”.The Third International Conference

on Availability, Reliability and Security,0-

7695-3102-4/08, 2008 IEEE.

Ankita Kushwah & Gajendra Singh

International Journal of Emerging Engineering Research and Technology 42

[4] V.Shanmughaneethi, C.EmilinShyni and

Dr.S.Swamynathan, “SBSQLID: Securing

Web Applications with Service Based SQL

Injection Detection” 2009 International

Conference on Advancesin Computing,

Control, and Telecommunication

Technologies, 978-0-7695-3915-7/09, 2009

IEEE

[5] Yuji Kosuga, Kenji Kono, Miyuki Hanaoka,
Hiyoshi Kohoku-ku, Yokohama, Miho

Hishiyama, Yu Takahama, Kaigan Minato-

ku, “Sania: Syntactic and Semantic Analysis
for Automated Testing against SQL

Injection” 23rd Annual Computer Security

Applications Conference, 2007, 1063-

9527/07, 2007 IEEE

[6] Prof (Dr.) Sushila, MadanSupriyaMadan,
“Shielding Against SQL Injection Attacks

Using ADMIRE Model”, 2009 First

International Conference on Computational

Intelligence, Communication Systems and
Networks, 978-0-7695-3743-6/09 2009

IEEE

[7] A S Yeole, B BMeshram, “Analysis of

Different Technique for Detection of SQL

Injection”, International Conference and
Workshop on Emerging Trends in

Technology (ICWET 2011) – TCET,

Mumbai, India, ICWET‟11, February 25–26,
2011, Mumbai, Maharashtra, India. 2011

ACM.

[8] Ke Wei, M. Muthuprasanna, Suraj Kothari,

“Preventing SQL Injection Attacks in Stored

Procedures”.Proceedings of the 2006
Australian Software Engineering

Conference (ASWEC‟06).

[9] Debasish Das, Utpal Sharma, D. K.

Bhattacharyya, “Rule based Detection of

SQL Injection Attack”, International Journal
of Computer Applications (0975 – 8887)

Volume 43– No.19, April 2012.

[10] NTAGW ABIRA Lambert, KANG

Song Lin, “Use of Query Tokenization to

detect and prevent SQL Injection Attacks”,
978-1-4244-5540-9/10/2010 IEEE.

[11] Kai-Xiang Zhang, Chia-Jun Lin, Shih-
Jen Chen, Yanling Hwang, Hao-Lun Huang,

and Fu-Hau Hsu, “TransSQL: A Translation

and Validation-based Solution for SQL-
Injection Attacks”, First International

Conference on Robot, Vision and Signal

Processing, IEEE, 2011.

