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Abstract: General purpose blind image quality assessment (BIQA) has been recently attracting significant 

attention in the fields of image processing, vision and machine learning. State of- the-art BIQA methods usually 

learn to evaluate the image quality by regression from human subjective scores of the training samples. 

However, these methods need a large number of human scored images for training, and lack an explicit 

explanation of how the image quality is affected by image local features. An interesting question is then: can we 

learn for effective BIQA without using human scored images? This paper makes a good effort to answer this 

question. We partition the distorted images into overlapped patches, and use a percentile pooling strategy to 

estimate the local quality of each patch. Then a quality-aware clustering (QAC) method is proposed to learn a 
set of centroids on each quality level. These centroids are then used as a codebook to infer the quality of each 

patch in a given image, and subsequently a perceptual quality score of the whole image can be obtained. The 

proposed QAC based BIQA method is simple yet effective. It not only has comparable accuracy to those 

methods using human scored images in learning, but also has merits such as high linearity to human perception 

of image quality, real-time implementation and availability of image local quality map.

 

1. INTRODUCTION 

With the ubiquitous use of digital imaging devices (e.g., digital cameras and camera phones) and the 

rapid development of internet service, digital images have been becoming one of the most popular 

types of media in our daily life. For example, one can easily find a huge amount of images in Google, 

Face book and Flicker, etc. The quality of those images can be deteriorated due to noise corruption, 
blur, JPEG or JPEG 2000 compression, etc. However, in most scenarios we do not have the source of 

the distorted image, and consequently how to evaluate blindly the quality of an image has been 

becoming increasingly important [22]. The current blind image quality assessment (BIQA) methods 
can be classified into two categories: distortion specific methods [1, 8, 9, 18, 25] and distortion 

independent methods [4, 10, 13, 14, 16, 17, 21, 27]. The former category estimates the quality of an 

image by quantifying the particular artifacts induced by the distortion process, and usually works well 
for one specific type of distortion. The latter category often refers to the general purpose BIQA, which 

is clearly a much more challenging task than the former category due to the lack of distortion 

information. In this paper we focus on the general purpose BIQA methods. 

Most of the state-of-the-art BIQA methods [4, 10, 13, 14, 16, 17, 21, 27] learn to estimate the image 
quality from training samples whose human subjective quality scores are available, e.g., the images in 

the TID2008 [15], LIVE [19] and CSIQ [6] databases. Generally speaking, all these methods follow a 

two-step framework: feature extraction and model regression by human scores. The method proposed 
by Moorthy et al. [13] first uses a support vector machine (SVM) to detect the distortion type and then 

uses a support vector regression (SVR) [20] model specified to that distortion for BIQA. Saad et al. 

trained a probabilistic model for BIQA based on the contrast and structural features such as kurtosis 
and anisotropy in the DCT domain [16]. The BIQA metric in [21] extracts three sets of features based 

on the statistics of natural images, distortion textures and blur/noise. Three regression models are then 

trained for each feature set and finally a weighted combination of them is used to estimate the image 

quality. A summarization of the used features and the regression algorithms in recently developed 
BIQA methods can be found in [27]. The mostly widely used algorithm for regression is the SVR 

with a radial basis function as kernel. In [4], the sparse representation based classifier firstly 

developed in face recognition literature [26] was used to regress the image quality score.  
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Though the above methods represent the state-of-the-arts of BIQA research, there are several 
important issues to be further addressed. First of all, all these methods need a large amount of human 

scored images for training. This makes the developed algorithm training dataset dependent, and the 

results are heavily dependent on the size of training samples.   

 

Figure 1. (a) The ten training images used by us. They are randomly selected from the Berkeley Segmentation 

database [7]. Reference images in the (b) LIVE database [19]; (c) TID2008 database [15]; and (d) CSIQ 

database [6]. 

Second, these methods usually learn a mapping function (e.g., using SVR) to map the extracted image 
features (e.g., global statistics) to a single perceptual score. This makes the BIQA process a black box 

and the relationship between features and quality score implicit. None of these methods can provide a 

local quality map of the distorted image, which is much desirable to understand the good and bad 
quality regions of the input image. Third, some of these methods can achieve relatively high BIQA 

accuracy, but their complexity is too high to be implemented in real, time limiting their practical use.  

Intuitively, one interesting question is can we develop an effective and efficient BIQA algorithm but 
without using human scored images for training? In [11], Mittal et al. ever proposed such an 

algorithm by conducting probabilistic latent semantic analysis (pLSA) on the statistical features of a 

large collection of pristine and distorted image patches. The uncovered latent quality factors are then 

applied to the image patches of the test image to infer a quality score. However, this method does not 
perform well compared with those methods learning with human scoring information.  

In this paper, we present a novel solution to BIQA using no human scored images in learning. They 

key is that we propose a quality-aware clustering (QAC) method to learn a set of quality-aware 
centroids and use them as the codebook to infer the quality of an image patch so that the quality of the 

whole image can be determined. With some reference and distorted images (but without human 

score), we partition them into overlapped patches and use a percentile pooling strategy to estimate the 
quality of each patch. According to the estimated quality level, the patches are grouped into different 

groups, and QAC is applied to each group to learn the quality-aware centroids. In the testing stage, 

each patch of the distorted image is compared to the learned quality aware centroids, and a simple 

weighted average operation is used to assign a score to it. The perceptual quality score of the whole 
image can then be figured out by summing over all patches.  

The proposed QAC based BIQA method is simple yet effective. Our experimental results validate that 

it has comparable accuracy to those state-of-the-art methods learning from human scored images. The 
QAC method has the following feature points. First, it shows that even without using using human 

scored images for training, we are  still able to develop effective BIQA algorithms. Second, it builds 

an explicit relationship between the image feature and the quality score, and could provide a local 

quality map of the input image, which is not achievable by all the other BIQA methods. Third, the 
proposed QAC is very fast and can work in real-time, making it applicable to devices with limited 

computational resources (e.g., cell phones). At last, QAC has a very high linearity to human 

perception of image quality. The rest of the paper is organized as follows. The learning of quality-
aware centroids by QAC is described in detail in Section 2. Then how to use the learned centroids to 

perform blind quality estimation is described in Section 3. Experiments and discussions are detailed in 

Section 4. Finally, Section 5 concludes the paper.   

2. QUALITY-AWARE CLUSTERING  

2.1. Learning Dataset Generation 

Our method works on image patches and aims to learn a set of quality-aware centroids for blind image 

quality assessment (BIQA). To this end, we need some reference and distorted images for training but 
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do not need to know the human subjective scores of the distorted images. Considering that the 

existing IQA databases [6, 15, 19] will be used to evaluate and compare the different BIQA 

algorithms in the experiments, we do not use them in our method to better validate the generality and 

database-independency of our approach. Instead, we randomly selected from the Berkeley image 

database [7] ten source images (please refer to Fig. 1(a)), which have different scenes from the images 

in the databases [6, 15, 19] that will be used in our experiments (please refer to Fig. 1(b)∼ Fig. 1(d) 

for these images). We then simulated the distorted images of the ten images. The four most common 

types of distortions are simulated: Gaussian noise, Gaussian blur, JPEG compression and JPEG2000 

compression. These four distortion types are also the ones TID2008, LIVE and CSIQ databases have 

in common. For each image, we generate its distorted versions of each type on three quality levels by 

controlling the noise standard deviation (for distortion of Gaussian noise), the support of blur kernel 

(for distortion of Gaussian blur), the resulted quality level (for distortion of JPEG compression) and 

the compression ratio (for distortion of JPEG2000 compression), respectively. Finally, we obtain a 

dataset of 120 distorted images and 10 reference images. A choice of the three quality levels should   

aksure that the quality distribution of the resulted samples in the next section is balanced.  

                                                                        

 

                                 Figure 2. Flowchart of the proposed quality-aware clustering (QAC) scheme. 

2.2. Patch Quality Estimation and Normalization 

With the simulated dataset which has no human subjective quality score, we aim to learn a set of 

quality- ware 

Centroids for BIQA. The flowchart of our learning scheme is illustrated in Fig. 2. We partition the 

reference and distorted images into many overlapped patches. Denote by xi a patch of one reference 

image and by di the distorted version of it. One key problem in our method is how to assign a 

perceptual quality to di. To this end, we can first use the similarity function in some state-of-the-art 

full-reference image quality assessment (FR-IQA) method, such as SSIM [23] and FSIM [29], to 

calculate the similarity between xi and di. By this way, the dependencies on human core are removed. 

In this paper, we use FSIM: 

=S( )                                                                                      

                                                                                                                      

=                                              (1)    
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Where PC(xi) and G(xi) refer to the phase congruency [5] and gradient magnitude at the center of xi, 

respectively, and t1 and t2 are positive constants for numerical stability. The similarity score si can 

reflect the quality of di to 

Some extent and it ranges from 0 to 1. In FR-IQA, we usually simply take si as the local quality score 
of di, and 

Average all si in one image as the final quality score of this image. Such a simple strategy works well 

for FR-IQA since the availability of reference image. However, our goal here is to learn for 

performing BIQA, and taking si as the quality score of di will have some problem. Suppose that the 
real human scored quality of a distorted image d is s, if we take si as the local quality score of its 

patch di, then the average of all si can be very different from s, leading to much bias in the learning 

stage. 

 

                                              

Figure 3. The effect of percentile pooling. Y-axis denotes the prediction Score by IQA models. Note that the 

mean values of the Lowest 10% predicted quality scores shows much better linearity To the human subjective 

scores. 

To solve this problem, we must normalize si in order to make the average of all si in an image as close 

to its overall perceptual quality as possible. It is known that the similarity functions in FR-IQA 

methods can only give a nonlinear monotonic prediction of the human subjective score [23, 29]. Fig. 3 

shows an example on the LIVE database. The red round point shows the FR-IQA results by FSIM 

with average pooling versus the subjective score with a two-order polynomial fitting. It is this 

nonlinearity that often makes the estimated quality score deviate from the human perception. On the 

other hand, it has been found that in an image, the predicted quality of the worst local areas has a 

good linearity to human perception [12, 24]. The blue squared points in Fig. 3 shows the worst 10% 

percentile pooling results of FSIM versus the subjective score, which has much better linearity. Based 

on this finding, we propose a percentile pooling procedure to normalize si. In particular, we divide si 

by a constant C such that the average quality of all patches in an image will equal to the percentile 

pooling result. 

Denote by Ω the set of patch indices of an image, and by Ωp the set of indices of the 10% lowest 

quality patches. The normalization factor C is calculated as: 

                                                                                                                                    (2) 

Then each  is normalized as:   

2.3. Quality-Aware Clustering 

With the patch quality normalization strategy in Section 2.2, finally we can have a set of patches {di} 

and their normalized quality scores {ci}, based on which the quality aware clustering can be 

conducted. The idea is that with 
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Figure 4. Examples of the quality-aware clustering outputs. Top row: 3 clusters on quality level ql = 0.1; 

bottom row: 3 clusters on quality level ql = 1.  

{ci} in hand, we can group {di} into groups of similar quality, and then cluster those patches in the 

same quality group into different clusters based on their local structures. Since ci is a real-value 
number between 0 and 1, we first uniformly quantize ci into L levels, denoted by ql = l/L, l = 1, 2 . . . 

L. Then the patches having the same quality level are grouped into the same group, denoted by Gl. 

There is: 

                                                                                         (3) 

 

The clustering is then applied to each group Gl. Since the quality of each group is aware, we call this 

clustering 

quality-aware clustering (QAC). To enhance the clustering accuracy, the QAC within each Gl should 

be based on some structural feature of di. In this paper, we use the following high pass filter to extract 
the feature of patch di: 

                                                                                                                 (4) 

Where σ is the scale parameter to control the shape of the filter. By convolving hσ with the image, the 

image detailed structures will be enhanced. It has been shown that the profile of the receptive field of 
the ganglion in the early stage of human vision is analogous to the shape of the difference of Gaussian 

(DoG) filter [28]. The filter defined in Eq. 4 is a special case of DoG filter when the support size of 

the first Gaussian shrinks to 1. In our implementation, we use three hσ on different scales (σ = 0.5, 
2.0, 4.0 in our experiments) to extract the feature of di. The filtering outputs of di on the three scales 

are concatenated into a feature vector, denoted by fi. The QAC of di ∈ Gl is then performed by 

applying the K-mean clustering algorithm to fi: 

                                                                                                       (5) 

where Gl,k is the k
th
 cluster in Group Gl. Note that other similarity metric may be used for clustering. 

However, given 

given the complexity cost, we just use the Euclidean distance. Besides, in the framework of quality 

aware clustering, this is not necessary. For the clustering, we use the spectrum clustering in [2], which 

is efficient to solve Eq. 5. As a result, for each group Gl, we learn a set of centroids { }, k = 1, 2 . . 

. K. Finally, we have L sets of centroids on L 

different quality levels, and we call them quality-aware centroids. Those centroids will then act as a 

structured codebook to encode the quality of each patch so that the overall quality of the image can be 

inferred. In Fig. 4, we show three clusters of patches on the worst quality level (ql = 0.1) and the best 
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quality level (ql = 1), respectively, by setting L = 10 and K = 30. One can see that the cluster of 

patches on the worst quality level exhibit obvious compression, blur and noise like distortions, while 

the clusters on the best quality level exhibit Gaborlike structures. These observations accord with the 

widely recognized conclusion that the visual receptive fields in the primary visual cortex (V1) are 

local orientated.  

3. BLIND QUALITY POOLING  

With the learned quality-aware centroids { }, in Section2, for each given distorted image, denoted 

by y, we can easily estimate its perceptual quality by following the procedures: patch partition and 

feature extraction, cluster assignment on multiple quality levels, patch quality score estimation, and 

final pooling with all patches’ quality.  

Patch partition and feature extraction:  

For the test image y, we partition it into N overlapped patches yi, and use the high pass filters h σ to 

extract the feature vector, denoted by , of each yi, i = 1, . . . , N........ 

Cluster assignment:  

By assuming that patches which have similar structural features will have similar visual quality, on 

each quality level l we find the nearest centroid to the feature vector fy i of patch yi. Denote by ml,ki 

this nearest centroid on level l. Then we will assign yi to L clusters defined by ml,ki , l = 1, . . . L. The 

quality of patch yi can be computed as the weighted average of the quality levels of these centroids.  

Patch quality estimation:  

The distance between fy i and ml,ki is δl,i = _fyi − ml,ki_2 . Clearly, the shorter the distance δl,i is, 

the more likely patch yi should have the same quality level as that of centroidml,ki . Therefore, we can 

use the following weighted average rule to determine the final quality score of yi:  

                                                                                                                                    (6) 

where λ is a parameter to control the decay rate of weight exp(−δl,i/λ) w.r.t. distance δl,i. One can see 

that the distance based weighted average in Eq. 6 actually interpolates the real-valued quality score of 

patch yi from the discrete quality levels ql. This makes the quality estimation more robust and more 

accurate.  

Final pooling: 

With the estimated quality zi of all patches yi available, we can then infer the final single quality 

score, denoted by z, of test image y. Various pooling strategies such as max pooling and percentile 

pooling have been proposed in literature [12, 27]. Here we use the simplest average pooling: 

z =                                                                                                                                            (7) 

It can be seen that the testing stage of our method is very simple, while our experimental results in 

next section demonstrate its competitive performance. The complexity analysis and running time 

comparison can be found in Section 4.3, where we can see that the proposed method can run in real 

time, making it a very good choice for practical BIQA applications in various resource-limited 

devices. 

4. EXPERIMENTAL RESULTS 

4.1. Protocol 

The performance of QAC is validated in terms of its ability to predict the subjective ratings of image 

quality. The three largest publicly available subject-rated databases are employed: LIVE [19], CSIQ 

[6] and TID2008 [15]. For each image in these database, a subjective quality/distortion score, i.e., the 
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mean opinion score (MOS) or difference mean opinion score (DMOS), is assigned to validate the 

BIQA algorithms. The LIVE database consists of 779 distorted images generated from 29 original 

images by processing them with 5 types of distortions on various levels: JPEG2000 compression 

(JP2K), JPEG compression, additive white noise (WN), Gaussian blurring (GB) and simulated fast 

fading Rayleigh channel (FF). These distortions reflect a broad range of image impairments, for 

example, edge smoothing, block artifacts and random noise. The CSIQ database is composed of 30 

original images and their distorted counterparts by using six types of distortions on five different 

distortion levels. The TID2008 database is composed of 25 reference images and their distorted 

versions of 17 types on 4 levels. As in many previous works [4, 14, 16], in our experiments we only 

consider 4 types of distortions that are common to the three databases: JPEG2000, JPEG, WN and 

GB.   

Table 1. Blind image quality assessment results                          

s.no IMAGE  QUALITY 

1 Img1lena.jpg 0.6599 

2 Img2flower.jpg 0.6349 

3 Img3building.jpg 0.6422 

4 Img4nature.jpg 0.6963 

5 Img5.bmp 0.5925 

4.2.   Implementation Details and Results of QAC 

In the implementation, we partition the 130 training images into overlapped patches of size 8×8. In 

total, 161,181 patches are extracted for training. In feature extraction, we set the three scales of high 

pass filters (refer to Eq. 4) as σ = 0.5, 2.0, 4.0. In clustering, we quantize the quality into L = 10 levels; 

that is, ql is from 0.1 to 1 with step length 0.1. On each quality level, K = 30 clusters are clustered by 

using the clustering algorithm in [2]. These centroids together form a codebook to encode the quality 

of test images. In the test stage, we set the parameter λ in Eq. 6 as 32. The Matlab source code of the 

proposed QAC can be downloaded at http://www.comp.polyu.edu.hk/ cslzhang/code.htm.  

 

Figure 5. Average performance (SROCC) gain of the existing BIQA methods over the proposed QAC. 

4.3. Comparison with State-of-the-Arts 

We then compare QAC with state-of-the-art and representative BIQA methods, including BIQI [13], 

DIIVINE [14], BLIINDS-II [17], CORNIA [27] and BRISQUE [10]. Note that all these methods use 

the human scored images for learning. The codes of these methods are provided by the authors and we 

tune the parameters to achieve their best results. Due the limit of space, we only present the SROCC 

results here since it is the similar conclusions can be obtained by the PCC results.) Except for the 

proposed QAC, all the other methods need to partition the IQA database into a training set and a 

testing set. We present their results under three settings: 80%, 50% and 30% samples are used for 

training and the remaining for testing. The partition is randomly conducted 1000 times and the 

average results are shown here 
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Figure 6. Left: JPEG distorted image from the LIVE database; Right: the local quality map predicted by the 

Proposed QAC method. The areas highlighted by red rectangles are of the worst quality, which are identical to 

human erception 

5. CONCLUSIONS 

We presented a novel general purpose blind image quality assessment (BIQA) approach, which is 

completely free of the human subjective scores in learning. The key of the proposed approach lies in 

the developed quality-aware clustering (QAC) scheme, which could learn a set of quality aware 

centroids to act a codebook to estimate the quality levels of image patches. Via extensive 
experimental validations, we could have the following conclusions. First, as a database independent 

method, the proposed. QAC achieves competitive SROCC results with those state of- the-art BIQA 

methods which heavily exploit the human subjective scores in training. Second, QAC has very good 
linearity to human perception of image quality. Third, it can provide a local quality map of the 

distorted image, which is not available by other BIQA methods. At last, QAC provides a real-time 

solution to BIQA applications 
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