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Abstract: Parallel processing issues become engrained into a variety of applications. This paper concentrates 

on exploiting parallelism at machine level and data level for processing in AI systems. A review had been 

conducted and the proposed algorithm is applied over the Knight Tour problem specified under several 

scenarios. The result obtained from the scenarios prove that the proposed technique is advantageous over the 

existing technique as there is a significant level of reduction in the machine response time, and also it eliminates 

the need for extra memory, as it avoids backtracking. The proposed algorithm when applied over an enhanced 

machine whose architecture is based on machine level parallelism results in an AI system, whose response time 
would still be reduced. 
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1. INTRODUCTION 

1.1 Parallel Processing 

In computers, parallel processing is the processing of program instructions by dividing them among 

multiple processors with the objective of running a program in less time. 

1.2 Production System 

The production system is a model of computation that has proved particularly important in AI, both 

for implementing search algorithms and for modeling human problem solving. A production system 

provides pattern-directed control of a problem-solving process and consists of a set of production 
rules, a working memory, and a recognize-act control cycle. 

1.3 Knight Tour Problem 

The use of predicate calculus with a general controller to solve problems is illustrated through an 
example: a reduced version of the knight’s tour problem. In the game of chess, a knight can move two 

squares either horizontally or vertically followed by one square in an orthogonal direction as long as it 

does not move off the board. There are thus at most eight possible moves that the knight may make. 

As traditionally defined, the knight’s tour problem attempt to find a series of legal moves in which the 
knight lands on each square of the chessboard exactly once. This problem has been a mainstay in the 

development and presentation of search algorithms. The example we use in this paper is a simplified 

version of the knight’s tour problem. It asks whether there is a series of legal moves that will take the 
knight from one square to another on a reduced-size (3x3) chessboard. 

A (3x3) chessboard with each square labeled with integers 1to 9 is shown in Figure 1. This labeling 

scheme is used instead of the more general approach of giving each space a row and column number 

in order to further simplify the example.  

In view of the reduced size of the problem, we simply enumerate the alternative moves rather than 

developing a general move operator. The legal moves on the board are than described in predicate 

calculus using a predicate called move, whose parameters are the starting and ending squares of a 
legal move.  

For example, move (1, 8) takes the knight from the upper left-hand corner to the middle of the bottom 

row. The predicates of figure 1 enumerate all possible moves for the 3x3 chessboard.   
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1 move(1,8)  9 move(6,1) 

2 move(1,6)  10 move(6,7) 

3 move(2,9)  11 move(7,2) 

4 move(2,7)  12 move(7,6) 

5 move(3,4)  13 move(8,3) 

6 move(3,8)  14 move(8,1) 

7 move(4,9)  15 move(9,2) 

8 move(4,3)  16 move(9,4) 

Fig1. A 3X3 chessboard with move rules for the simplified Knight Tour Problem 

These predicates form the knowledge base for the knight tour problem. As an example of how 

unification is used  to access this knowledge base , we test for the existence of various moves on the 

board . To determine whether there is a move from 1 to 8, call pattern_search(move(1,8)). Since this 
goal unifies with move(1,8) in the knowledge base, the result is success, with no variable 

substitutions required. 

Another request might be to find where the knight can move from a particular location, such as square 

2 . The goal move(2,X) unifies with  two different predicates in  the knowledge base, with the 
substitutions of  {7/X} and {9/X}. Given the goal move(2,3) exists in the knowledge base . The goal 

query move(5,Y) also fails because no assertions exist that  define a move from square 5. 

The next task in constructing a search algorithm is to devise a general definition for a path of 
successive moves around the board, this is done through the use of predicate calculus implications, 

These are added to the knowledge base as rules for creating paths of successive moves . To emphasize 

the goal-directed use of these rules, we have reversed the direction of the implication arrow,i.e., the 

rules are written as conclusion premise  

For example, a two –move path could be formulated as: 

 X, Y [path2(X, Y)   Z [move(X, Y)] ^ move (Z,Y)]] 

This rule says that for all locations X and Y, a two –move path exists between them if there exists a 
location Z such that the knight can move from X to Z and then move from Z to Y. 

The general path2 rule can be applied in a number of ways. First, it may be used to determine 

whether there is a two-move path from one location to another. If pattern-search is called with the 
goal path2 (1, 3), it matches the goal with the consequence of the rule path2(X,Y), and the 

substitutions are made in the rule’s premise; the result is a specific rule that defines the conditions 

required for the path: 

Path (2(1, 3)  Z [move (1, Z) ^move (Z, 3)] 

Pattern_search then calls itself on this premise. Since this is a conjunction of two expressions, 
pattern_search will attempt to solve each subgoal separately. This requires not only that both subgoals 

succeed but also that any variable bindings be consistent across subgoals, substituting 8 to Z allows 

both subgoal to succeed. 

Another request might be to find all locations that can be reached in two moves from location 2. This 

is accomplished by giving pattern_search  the goal path2(2,Y).Through a similar process, a number 

of such substitutions may be found, including {6/Y} and {2/Y} (with intermediate Z being 7) and 

{2/Y} and {4/Y} (with intermediate location 9). Further requests could be to find a two-move path 
from a number to itself, from any number to 5, and so on. We notice here .once of the advantages of 

pattern__ driven control: a variety of queries may be taken s the initial goal. 

Similarly, a three –move path is defined as including two intermediate locations that are part of the 
path from initial to the goal. This is defined by: 

 X, Y [path3(x,y)  Z,W[move(X,Z) ^ move (Z,W)^move(W,Y)]] 

This clause can solve such goals as path3 (1,2), path 3(1,X),or even path3(X,Y).  

1 2 3 

4 5 6 

7 8 9 
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It soon becomes evident that the path moves are the same for a path of any length, simply requiring 

the proper number of intermediate places to “land”. It is also evident that the path moves could be 
stated in terms of each other, such as: 

 X,Y([path3(X,Z)  Z [move(X,Z)^path2(Z,Y)]] 

This suggests the single, general recursive rule: 

 X,Y [path(X,Y)   Z [move(X,Z)^path (Z,Y)]] 

The last path can be used to determine whether a path of any length exists. The rule may be stated as 

“to find a path from one square to another, first make a move from the starting square to an 
intermediate location and then find a path from the intermediate to the final square.” 

This recursive “path” rule is incomplete in that it includes no terminating condition. Any attempt to 

solve a goal involving the path predicate would fail to halt because each attempt to solve the premise 
would lead to another recursive call on path (Z, Y). There is no test in the rule to determine whether 

the desire goal state is ever reached. This can be remedied by adding the clause path(X,X)to the 

knowledge base. Since path (X, X) will unify only with predicates such as path (3,3) or path (5,5), it 

defines the desired terminating condition. The general recursive path definition is then given by two 
predicate calculus formulas: 

 X path (X, X) 

 X,Y  [path(X,Y) [move(X,Z)^path(Z,Y)]] 

We observe again the elegance and simplicity of the recursive formulation. When combined with the 

recursive control provided by pattern _search, these rules will search the space of possible paths in 

the knight’s tour problem. Combined with the move rules, this yields the complete problem 
description (or knowledge base) 

move(1,8) move(1,6) move(2,9) move(2,7)  

move(3,4) move(3,8) move(4,9) move(4,3)  

move(6,1) move(6,7) move(7,2) move(7,6)  

move(8,3) move(8,1) move(9,2) move(9,4)  

 X path (X,X) 

 X, Y [path(X,Y)  [move(X,Y)^ path (Z,Y)]] 

It is important to note that the solution to the problem is implemented through both the logical 

descriptions that define the state space and the use of pattern_search to control search of that space. 

Although the path rule is a satisfactory definition of a path, it does not tell us how to find that path. 
Indeed, many undesirable or meaningless paths around the chessboard also fit this definition .For 

example, without some way   to prevent loops, the goal path (1, 3) could lead to a path from 1to 8 to 

3, both the loop and the correct path are logical consequences of the knowledge base. Similarly, if the 
recursive rule is tried before the terminating condition, the fact that path (3, 3) should terminate the 

search could be overlooked, allowing the search to continue meaninglessly. 

2. EXISTING PRODUCTION SYSTEM EXECUTION WITH SINGLE PROCESSOR 

The 3x3 knight’s tour problem presented in section 1.3 may be solved using a production system 

approach. Here each move would be represented as a rule whose condition is the location of the 

knight on a particular square and whose action moves the knight to another square. Sixteen 
productions represent all possible moves of the knight. 

Working memory contains both the board state and goal state. The control regime applies rules until 

the current state equals the goal state and then halts. A simple conflict resolution scheme would fire 

the first rule that did not cause the search to loop.  

Since the search may lead to dead ends (from which every possible move leads to a previously visited 

state and, consequently, a loop), the control regime should also allow backtracking; an execution of 

this production system that determines whether a path exists from square square 1 to 2 is shown in 
Table 1. 
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RULE CONDITION  ACTION 

1 knight on square 1  move knight to square 8 

2 knight on square 1  move knight to square 6 

3 knight on square 2  move knight to square 9 

4 knight on square 2  move knight to square 7 

5 knight on square 3  move knight to square 4 

6 knight on square 3  move knight to square 8 

7 knight on square 4  move knight to square 9 

8 knight on square 4  move knight to square 3 

9 knight on square 6  move knight to square 1 

10 knight on square 6  move knight to square 7 

11 knight on square 7  move knight to square 2 

12 knight on square 7  move knight to square 6 

13 knight on square 8  move knight to square 3 

14 knight on square 8  move knight to square 1 

15 knight on square 9  move knight to square 2 

16 knight on square 9  move knight to square 4 

Fig2. A 3X3 chessboard with Possible moves for the simplified Knight Tour Problem. 

Table1. A path from square 1 to square 2 

Iteration # 
Working memory 

Current square        Goal square 
Conflict Set Fire rule 

0 1 2 1,2 1 

1 8 2 13,14 13 

2 3 2 5,6 5 

3 4 2 7,8 7 

4 9 2 15,16 15 

5 2 2  Halt 

It is interesting to note that in implementing that path predicate in the knight’s tour example of 

section 1.3 , we  have actually implemented this production system solution. From this point of view, 

pattern_search is simply an interpreter, with the actual search implemented by the path definition. 
The  production  are the move  facts, with the first parameter specifying the condition (the square the 

piece must be on to make the move)and the second parameter, the action (the square to which it can 

move). The recognize-act cycle is implemented by the recursive path predicate. Working memory 
contains the current state and the desired goal state and is represented as the parameters of the path 

predicate. On a given iteration, the conflict set is all of the move expressions that will unify with the 

goal move (x,z).  This program uses the simple conflict resolution strategy of selecting and firing the 

first move predicate encountered in the knowledge base that does not lead to a repeated state. The 
controller also backtracks from dead-end state. This characterization of the path definition as a 

production system is given in figure 2. 

Production systems are capable of generating infinite loops when searching a state space graph. These 
loops are particularly difficult to spot in a production system because the rule can fire in any order. 

That is, looping may appear in the execution of the system, but it cannot easily be found from  a 

syntactic inspection of the rule set. For example , with the  “move”  rule of the knight’s tour problem 

ordered as in section 5.2 and a conflict resolution strategy of  selecting the first match, the pattern  
move(2,X) would match with move(2,9), indication  a move to square 9. On the next iteration, the 

pattern move(9,X)  would match with  move(9,2), taking the search back to square 2, causing a loop. 

To prevent looping, pattern_search checks a global list (closed) of visited state. The actual conflict 
resolution strategy was therefore: select the first matching move that leads to unvisited state. 

In a production system, the proper   place for recording such case-specific data as a list of previously 

visited states is not a global closed list but the working memory itself. We can alter the path predicate 
to use working memory for loop detection. 

Let us assume that pattern_search does not maintain a global closed list or otherwise perform loop 

detection. Let us assume that our predicate calculus language is augmented by the addition of a 

special construct, assert(X) , which causes its argument X to be entered into the working memory. 
Assert is not an ordinary predicate but an action that is performed; hence, it always succeeds. 
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Fig3. The recursive path algorithm: a production system 

Assert is used to place a “marker” in working memory to indicate when a state has been visited. This 

marker is a unary predicate, been(X), which takes as its argument a square on the board been(X) is 
added to working memory when a new state X is visited. Conflict resolution may then require that 

been(Z) must not be in working  memory  before  move(X,Z) can fire . For a specific value of Z, this 

can be tested by matching a pattern against working memory. 

The modified recursive path definition is written: 

 X path(X,X) 

 X path(X,Y)  Z move(X,Y)(been(z))  assert(been(Z))  path(Z,Y) 

In this definition, move(X,Y) succeeds on the first match with a move predicate. This binds a value to 
Z. If been(Z) matches with an entry in working memory,-(been(Z)) will cause a failure (i.e., it will be 

false).   

pattern_search will then backtrack and try another  match for  move(X,Z). If square Z is a new state, 
the search will continue, with been(Z) asserted to the working memory to prevent future loops. The 

actual firing of the production takes place when the path algorithm recurs. Thus, the presence of been 

predicates in working memory implements loop detection in this production system. 

We note that although predicate calculus is used as the language for both productions and working 

memory entries, the procedural nature of production systems requires that the goal be tested in left-to-

right order in the path definition. Then order of interpretation is provided by pattern_search. 

Using assert: In this method, if we want to find it a path exists from Square 7 to Square 4, iterations 
shown in Table 2 result. 

Conflict Resolution 

Use first match that 

does not lead to loop 

Productions 

 

move(1,8) 

move(1,6) 

move(2,7) 

move(2,9) 

. 

. 

. 

Move(9,2) 

 

Try to unify 

working 

memory with 

path(X,X) 

X=Y? 

Working memory 

 

Path(X,Y) 

Recursive call to path(X,Y) causes iteration 

Match move(X,Z) 

against productions 

Halt 

Set X equal to Z 

in working 

memory(i.e.. call 

path(Z,Y) 
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Table2. Loop is avoided using assert in the path from square 7 to square 4 

Iteration # 

Working memory 

Current square        Goal 

square 

Conflict Set 

assert 

Fire rule 

0 7 4 11,12 11 11 

1 2 4 3,4 11,3 3 

2 9 4 15,16 11,3,15 15 

3 2 4 4 11,3,15,4 4 

4 7 4 12 11,3,15,4,12 12 

5 6 4 9,10 11,3,15,4,12,9 9 

6 1 4 1,2 11,3,15,4,12,9,1 1 

7 8 4 13,14 11,3,15,4,12,9,1,13 13 

8 3 4 5,6 11,3,15,4,12,9,1,13,5 5 

9 4 4   Halt 

3. PROPOSED PRODUCTION SYSTEM WITH MULTIPLE PROCESSORS 

3.1. Data Parallelism 

For this problem we are going to use Data Parallelism which is the use of multiple functional units to 
apply the same operation simultaneously to elements of a data set. The data set available here are the 

production rules. From the sixteen production rules given in the section 2, we can observe that for 

each square there exits exactly two possible moves.  

 X   Y,Z [path(X,Y), path(X,Z)] 

For example, from Square 1, the possible moves are move(1,8) and move(1,6). If these two moves are 
checked simultaneously by separate processors, one of the processor may yield the goal state. For 

every square, if the possible two moves are simultaneously checked, then there is no need for 

backtracking and two processors are more than enough for this problem. 

3.2. Working Method with Two Processors 

Working memory is initialized at the beginning with problem descriptions. The current state of the 

problem solving is maintained as a set of patterns in working memory. These patterns are matched 
against the goal state. If the current state is the goal state, then halt. Otherwise with recursive call to 

the production rules, this produces a subset of production rules called the conflict set. The conflict set 

always contains two production rules. One production rule will be processed by processor 1 and 
another processed by processor 2. If one of the production rules unify with the working memory, then 

halt. 

An algorithm proposed for the new model is given below 

Step 1: Start. 

Step 2: Input the Current State and Goal State. 

Step 3: Initialize Processor P1 with Current State. 

Step 4: P1 obtains the two possible Conflict Set from the Production Rules. 

Step 5: P1 fires the Rule for First Conflict Set from the Working Memory. 

     P2 fires the Rule for Second Conflict Set from the Working Memory. 

Step 6: If the P1 or P2 reaches the Goal State then Halt. 

Step 7: Else 

   Initialize P1 as per the Fire Rule in Step 5. 

Step 8: Repeat Step 4 to Step 7. 

From the above algorithm we test if a path exists from square 1 to square 2, iterations are as shown in 
table 3. 
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Fig4. The recursive path algorithm: a production system with two processors 

Table3. A path from square 1 to square 2 by two processor method 

Iteration # 

Working Memory 
Conflict set from 

P1 

Fire Rule  

P1                P2 

First      Second 
Current State 

P1                P2 
Goal State 

0 1 - 2 1,2 1 2 

1 8 6 2 13,14 13 14 

2 3 1 2 5,6 5 6 

3 4 8 2 7,8 7 8 

4 9 3 2 15,16 15 16 

5 2 4 2 Halt   

If we compare Table 1 and Table 3 (exhibiting a scenario, where the Current State is 1 and the GOAL 

state is 2), both the algorithms reaches the goal state in five iterations.  

An another Scenario, where if we want to find Whether a path exists  from square 7 to square 4 , 
iterations are shown in Table 4. 

Table4. A path from square 7 to square 4 by two processor method 

Iteration # 

Working Memory 

Conflict set from P1 

Fire Rule  

P1                P2 

First      Second 
Current State 

P1                P2 
Goal State 

0 7 - 4 11,12 11 12 

1 2 6 4 3,4 3 4 

2 9 7 4 15,16 15 16 

3 2 4 4 Halt   
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According to the above specified example, we are able to see a drastic reduction in the number of 

iterations, when we compare Table 2 and Table 4, as in Single processor method, it consumes 9 
iterations to reach the GOAL state, whereas in Two processor method, it consumes only 3 iterations to 

reach the GOAL state. 

Note: The single processor method consumes extra memory for storing assert, as in Table 2, which 
totally avoided in two processor method, i.e., in Table 4. As a result, the two processor method does 

not require any extra memory. 

Hence our proposed algorithm finds the path from square 7 to squar  4 in three iterations without any 
backtracking which is not possible in the existing algorithm. 

Another Scenario is also specified in Appendix A, where the Current state is 6 and the GOAL state is 

7. Here we are able to see a drastic reduction in the number of iterations, as in Single processor 

method, it consumes 13 iterations to reach the GOAL state, whereas in Two processor method, it 
consumes only 1 iterations to reach the GOAL state. 

 Converse path is also possible by our proposed algorithm. Suppose we want to find if a pat exists  

from square 4 to square 7 which is converse to table 4. The iterations are shown in Table 5. 

Table5. A path from square 4 to square 7 by two processor method 

Iteration # 

Working Memory 

Conflict set from P1 

Fire Rule  

P1                P2 

First      Second 
Current State 

P1                P2 
Goal State 

0 4 - 7 7,8 7 8 

1 9 3 7 15,16 15 16 

2 2 4 7 3,4 3 4 

3 9 7 7 Halt   

Hence, in this reduced 3X3 knight tour problem, we can find the path from any state as a current state 

and reach the goal state without any backtracking. If we use the backtracking, a single processor 
algorithm will test only one path of the current state and the goal state may be reached by many 

iterations. To reduce considerable amount of iterations, we use one more processor, so that both the 

paths of the state are checked by the two processors simultaneously. If the number of iterations are 

reduced, then definitely total execution time is reduced. 

4. CONCLUSIONS 

The result obtained from the scenarios prove that the proposed technique is advantageous over the 
existing technique as there is a significant level of reduction in the machine response time, and also it 

eliminates the need for extra memory, as it avoids backtracking. In this reduced 3X3 knight tour 

problem, we are having only 16 production rules. If we increase the rows and columns such as 8X8, 

!6X16, etc  then the production rules also increases. Searching with single processor from huge 
number of production rules will take much time. We can manage this problem by multiple processors 

and parallel algorithms. 
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