
International Journal of Emerging Engineering Research and Technology

Volume 2, Issue 4, July 2014, PP 60-77

ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online)

©IJEERT www.ijeert.org 60

Power Reduction Approach by using Multi-Bit Flip-Flops

B. Mysura Reddy

M.Tech (DECS) Scholar

N.B.K.R I.S.T, Vidyanagar

SPSR Nellore
msrw4u@gmail.com

M. Sivaprasad Reddy

Assistant Professor

N.B.K.R I.S.T, Vidyanagar

SPSR Nellore
Sivareddym120@gmail.com

Abstract: Power has become a burning issue in modern VLSI design. In modern integrated circuits, the power

consumed by clocking gradually takes a dominant part. Given a design, we can reduce its power consumption

by replacing some flip-flops with fewer multi-bit flip-flops. However, this procedure may affect the performance

of the original circuit. Hence, the flip-flop replacement without timing and placement capacity constraints

violation becomes a quite complex problem. To deal with thedifficulty efficiently, we have proposed several
techniques. First, we perform a co-ordinate transformation to identify those flipflops that can be merged and

their legal regions. Besides, we show how to build a combination table to enumerate possible combinations of

flip-flops provided by a library. Finally, we use a hierarchical way to merge flip-flops. Besides power reduction,

the objective of minimizing the total wirelength is also considered. The time complexity of our algorithm is

Θ(n1.12) less than the empirical complexity of Θ(n2). According to the experimental results, our algorithm

significantly reduces clock power by 20–30% and the running time is very short. In the largest test case, which

contains 1 700 000 flip-flops, our algorithm only takes about 5 min to replace flip-flops and the power reduction

can achieve 21%.

Keywords: Clock power reduction, merging, multi-bit flip-flop, replacement, wire length.

1. INTRODUCTION

Due to the popularity of portable electronic products,low power system has attracted more attention in

recent years. As technology advances, an systems-on-a-chip (SoC) design can contain more and more

components that lead to a higher power density. This makes power dissipation reach the limits of what

packaging, cooling or other infrastructure can support. Reducing the power consumption not only can
enhance battery life but also can avoid the overheating problem, which would increase the difficulty

of packaging or cooling [1], [2]. Therefore, the consideration of power consumption in complex SOCs

has become a big challenge to designers. Moreover, in modern VLSI designs, power consumed by
clocking has taken a major part of the whole design especially for those designs using deeply scaled

CMOS technologies [3]. Thus, several methodologies [4], [5] have been proposed to reduce the power

consumption of clocking. Manuscript received February 1, 2011; revised August 22, 2011; accepted

February 16, 2012. Date of publication April 5, 2012; date of current version March 18, 2013. This
work was supported in part by the National Science Council of Taiwan under Grant 100-2220-E-006-

005. The authors are with the Department of Electrical Engineering, National Cheng-Kung

University,Tainan70101,Taiwan(eail:kkttkkk@sscas.ee.ncku.edu.tw;jmlin@ee.ncku.edu.tw;gppo@ss
cas.ee.ncku.edu.tw;lcw@sscas.ee.ncku.edu.tw; ibrius@gmail.com; soon@mail.ncku.edu.tw). Color

versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Given a design that the locations of the cells have been determined, the power consumed by clocking
can be reduced further by replacing several flip-flops with multi-bit flip-flops. During clock tree

synthesis, less number of flip-flops means less number of clock sinks. Thus, the resulting clock

network would have smaller power consumption and uses less routing resource. Besides, once more

smaller flip-flops are replaced by larger multi-bit flip-flops, device variations in the corresponding
circuit can be effectively reduced. As CMOS technology progresses, the driving capability of an

inverter-based clock buffer increases significantly. The driving capability of a clock buffer can be

evaluated by the number of minimum-sized inverters that it can drive on a given rising or falling time.
Fig. 1 shows the maximum number of minimum-sized inverters that can be driven by a clock buffer in

different processes. Because of this phenomenon, several flip-flops can share a common clock buffer

to avoid unnecessary power waste. Fig. 2 shows the block diagrams of 1- and 2-bit flip-flops. If we
replace the two 1-bit flip-flops as shown in Fig. 2(a) by the 2-bit flip-flop as shown in Fig. 2(b), the

mailto:Sivareddym120@gmail.com
mailto:gppo@sscas.ee.ncku.edu.tw
mailto:gppo@sscas.ee.ncku.edu.tw
mailto:gppo@sscas.ee.ncku.edu.tw
mailto:lcw@sscas.ee.ncku.edu.tw
mailto:soon@mail.ncku.edu.tw

M.Sivaprasad Reddy & B.Mysura Reddy

International Journal of Emerging Engineering Research and Technology 61

total power consumption can be reduced because the two 1-bit flip-flops can share the same clock

buffer. However, the locations of some flip-flops would be changed after this replacement, and thus
the wirelengths of nets connecting pins to a flip-flop are also changed. To avoid violating the timing

constraints, we restrict that the wirelengths of nets connecting pins to a flip-flop cannot be longer than

specified values after this process. Besides, to guarantee that a new flipflop can be placed within the
desired region, we also need to consider the area capacity of the region. As shown in Fig. 3(a), after

the two 1-bit flip-flops f1 and f2 are replaced by the 2-bit flip-flop f3, the wirelengths of nets net1 , net2 ,

net3 , and net4 are changed. To avoid the timing violation caused by the replacement, the Manhattan
distance of new nets net1 , net2 , net3 , and net4 cannot be longer than the specified values. In Fig. 3(b),

we divide the whole placement region into several bins, and each bin has an area capacity denoting

the remaining area that additional cells can be placed within it. Suppose the area of f3 is 7 and f3 is

assigned to be placed in the same bin as f1. We cannot place f3 in that bin since the remaining area of
the bin is smaller than the area of f3. In addition to the considerations mentioned in the above, we also

need to check whether the cell library provides the type of the new flip-flop. For example, we have to

check the availability of a 3-bit flip-flop in the cell library when we desire to replace 1- and 2-bit flip-
flops by a 3-bit flip-flop.

Fig1. Maximum loading number of a minimum-sized inverter of different technologies (rising time 250 ps).

Fig2. Example of merging two 1-bit flip-flops into one 2-bit flip-flop.(a) Two 1-bit flip-flops (before merging).

(b) 2-bit flip-flop (after merging).

1.1. Related Work

 Chang et al. [6] first proposed the problem of using multi-bit flip-flops to reduce power consumption
in the post-placement stage. They use the graph-based approach to deal with this problem. In a graph,

each node represents a flip-flop. If two flip-flops can be replaced by a new flip-flop without violating

timing and capacity constraints, they build an edge between the corresponding nodes. After the graph

Power Reduction Approach by using Multi-Bit Flip-Flops

International Journal of Emerging Engineering Research and Technology 62

is built, the problem of replacement of flip-flops can be solved by finding an m-clique in the graph.

The flip-flops corresponding to the nodes in an m-clique can be replaced by an m-bit flipflop. They
use the branch-and-bound and backtracking algorithm [8] to find all m-cliques in a graph. Because

one node (flip-flop) may belong to several m-cliques (m-bit flip-flop), they use greedy heuristic

algorithm to find the maximum independent set of cliques, which every node only belongs to one
clique, while finding m-cliques groups. However, if some nodes correspond to k-bit flip-flops that k

1, the bit width summation of flip-flops corresponding to nodes in an m-clique, j , may not equal m.

If the type of a j -bit flip-flop is not supported by the library, it may be time-wasting in finding

impossible combinations of flip-flops.

1.2. Our Contributions

 The difficulty of this problem has been illustrated in the above descriptions. To deal with this

problem, the direct way is to repeatedly search a set of flip-flops that can be replaced by a new multi-
bit flip-flop until none can be done. However, as the number of flip-flops in a chip increases

dramatically, the complexity would increase exponentially, which makes the method impractical. To

handle this problem more efficiently and get better results, we have used the following approaches. 1)

To facilitate the identification of mergeable flip-flops, we transform the coordinate system of cells. In
this way,

Fig3(a). Combination of flip-flops possibly increases the wire length (b) Combination of flip-flops also changes

the density.

The memory used to record the feasible placement region can also be reduced. 2) To avoid wasting

time in finding impossible combinations of flip-flops, we first build a combination table before
actually merging two flip-flops. For example, if a library only provides three kinds of flip-flops,

which are 1-, 2-, and 3-bit, we first separate the flip-flops into three groups. Therefore, the

combination of 1- and 3-bit flip-flops is not considered since the library does not provide the type of

4-bit flip-flop. 3) We partition a chip into several subregions and perform replacement in each
subregion to reduce the complexity. However, this method may degrade the solution quality. To

resolve the problem, we also use a hierarchical way to enhance the result. The rest of this paper is

organized as follows. Section II describes the problem formulation. Section III presents the proposed
algorithm. Section IV evaluates the computation complexity. Section V shows the experimental

results. Finally, we draw a conclusion in SectionVI.

2. PROBLEM FORMULATION

Before giving our problem formulation, we need the following notations.

1) Let fi denote a flip-flop and bi denote its bit width.

2) Let A(fi) denote the area of fi .

M.Sivaprasad Reddy & B.Mysura Reddy

International Journal of Emerging Engineering Research and Technology 63

3) Let P(fi) denote all the pins connected to fi .

4) Let M(pi , fi) denote the Manhattan distance between a pin pi and fi , where pi is an I/O pin that
connectsto fi .

5) Let S(pi) denote the constraint of maximum wire length for a net that connects to a pin pi of a flip-

flop.

6) Given a placement region, we divide it into several bins [see Fig. 3(b) for example], and each bin is

denoted by Bk.

7) Let RA(Bk) denote the remaining area of the bin Bk that can be used to place additional cells.

8) Let L denote a cell library which includes different flip-flop types (i.e., the bit width or area in each

type is different).

Fig4. Defined slack region of the pin.

Given a cell library L and a placement which contains a lot of flip-flops, our target is to merge as

many flip-flops as possible in order to reduce the total power consumption. If we want to replace

some flip-flops fi ,..., f j−1 by a new flipflop fj , the bit width of fj must be equal to the summation of bit

widths in the original ones (i.e., Σbi = bj , i = 1 to j−1). Besides, since the replacement would change
the routing length of the nets that connect to a flip-flop, it inevitably changes timing of some paths.

Finally, to ensure that a legalized placement can be obtained after the replacement, there should exist

enough space in each bin. To consider these issues, we define two constraints as follows. 1) Timing
Constraint for a Net Connecting to a Flip-Flop fj from a Pin pi : To avoid that timing is affected after

the replacement, the Manhattan distance between pi and fj cannot be longer than the given constraint

S(pi) defined on the pin pi [i.e., M(pi , fj) ≤ S(pi)]. Based on each timing constraint defined on a pin,
we can find a feasible placement region for a flip-flop fj . See Fig. 4 for example. Assume pins p1 and

p2 connect to a 1-bit flip-flop f1. Because the length is measured by Manhattan distance, the feasible

placement region of f1 constrained by the pin pi [i.e., M(pi , f1) ≤ S(pi)] would form a diamond

region, which is denoted by Rp(pi), i = 1 or 2. See the region enclosed by dotted lines in the figure.
Thus, the legal placement region of f1 would be the overlapping region enclosed by solid lines, which

is denoted by R(f1). R(f1) is the overlap region of Rp(p1) and Rp(p2). 2) Capacity Constraint for Each

Bin Bk : The total area of flip-flops intended to be placed into the bin Bk cannot be larger than the
remaining area of the bin Bk (i.e., ΣA(fi) ≤ A(Bk)).

3. OUR ALGORITHM

Our design flow can be roughly divided into three stages. Please see Fig. 5 for our flow. In the
beginning, we have to identify a legal placement region for each flip-flop fi . First, the feasible

placement region of a flip-flop associated i
th

 different pins are found based on the timing constraints

defined on the pins. Then, the legal placement region of the flip-flop fi can be obtained by the
overlapped area of these regions. However, because these regions are in the diamond shape, it is not

easy to identify the overlapped area.Therefore, the overlapped area can be identified more easily if we

can transform the coordinate system of cells to get rectangular regions. In the second stage, we would

like to build a combination table, which defines all possible combinations of flip-flops in order to get

Power Reduction Approach by using Multi-Bit Flip-Flops

International Journal of Emerging Engineering Research and Technology 64

a new multi-bit flip-flop provided by the library. The flip-flops can be merged with the help of the

table. After the legal placement regions of flip-flops are found and the combination table is built, we
can use them to merge flip-flops. To speed up our program, we will divide a chip into several bins

and merge flip-flops in a local bin. However, the flip-flops in different bins may be mergeable. Thus,

we have to combine several bins into a larger bin and repeat this step until no flip-flop can be merged
anymore. In this section, we would detail each stage of our method. In the first subsection, we show a

simple formula to transform the original coordination system into a new one so that a legal placement

region for each flip-flop can be identified more easily. The second subsection presents the flow of
building the combination table. Finally, the replacements of flip-flops will be described in the last

subsection. defined on the pins. Then, the legal placement region of the flip-flop fi can be obtained by

the verlapped area of hese regions. However, because these regions are in th diamond shape, it is not

easy to identify the overlapped area Therefore, the overlapped area can be identified more easily if we
can transform the coordinate system of cells to get rectangular regions.

In the second stage, we would like to build a combination table, which defines all possible

combinations of flip-flops in order to get a new multi-bit flip-flop provided by the library. The flip-
flops can be merged with the help of the table. After the legal placement regions of flip-flops are

found and the combination table is built, we can use them to merge flip-flops. To speed up our

program, we will divide a chip into several bins and merge flip-flops in a local bin. However, the flip-
flops in different bins may be mergeable. Thus, we have to combine several bins into a larger bin and

repeat this step until no flip-flop can be merged anymore. In this section, we would detail each stage

of our method. In the first subsection, we show a simple formula to transform the original

coordination system into a new one so

Fig5. Flow chart of our algorithm.

that a legal placement region for each flip-flop can be identified more easily. The second subsection

presents the flow of building the combination table. Finally, the replacements of flip-flops will be

described in the last subsection.

3.1. Transformation of Placement Space

We have shown that the shape of a feasible placement region associated with one pin pi connecting to

a flip-flop fi would be diamond in Section II. Since there may exist several pins connecting to f i , the

legal placement region of fi are the overlapping area of several regions. As shown in Fig. 6(a), there

are two pins p1 and p2 connecting to a flip-flop f1, and the feasible placement regions for the two pins

are enclosed by dotted lines, which are denoted by Rp(p1) and Rp(p2), respectively. Thus, the legal

placement region R(f1) for f1 is the overlapping part of these regions. In Fig. 6(b), R(f1) and R(f2)

represent the legal placement regions of f1 and f2. Because R(f1) and R(f2) overlap, we can replace f1

and f2 by a new flip-flop f3 without violating the timing constraint, as shown in Fig. 6(c). However, it

M.Sivaprasad Reddy & B.Mysura Reddy

International Journal of Emerging Engineering Research and Technology 65

is not easy to identify and record feasible placement regions if their shapes are diamond. Moreover,

four coordinates are required to record an overlapping region [see Fig. 7(a)]. Thus, if we can rotate

each segment 45
°
, the shapes of all regions would become rectangular, which makes identification of

overlapping regions become very simple.

Fig. 6. (a) Feasible regionsRp (p1) and Rp(p2) for pins p1 and p2 which are enclosed by dotted lines,

and the legal region R(f1) for f1 which is enclosed by solid lines. (b) Legal placement regions R(f1)

and R(f2) for f1 and f2, and the feasible area R3 which is the overlap region of R(f1) and R(f2). (c)

New flip-flop f3 that can be used to replace f1 and f2 without violating timing constraints for all pins

p1, p2, p3, and p4 .

Fig7(a). Overlapping region of two diamond shapes. (b) Rectangular shapes obtained by rotating the diamond

shapes in (a) by 45°.

For example, the legal placement region, enclosed by dotted lines in Fig. 7(a), can be identified more

easily if we change its original coordinate system [see Fig. 7(b)]. In such condition, we only need two

coordinates, which are the left-bottom corner and right-top corner of a rectangle, as shown in Fig.

7(b), to record the overlapped area instead of using four coordinates. The equations used to transform

coordinate system are shown in (1) and (2). Suppose the location of a point in the original coordinate

system is denoted by (x, y). After coordinate transformation, the new coordinate is denoted by (x′ , y
ꞌ

). In the original transformed equations, each value needs to be divided by the square root of 2, which

would induce a longer computation time. Since we only need to know the relative locations of flip-

flops, such computation are ignored in our method. Thus, we use x″ and y″, to denote the coordinates

of transformed locations

Then, we can find which flip-flops are mergeable according to whether their feasible regions overlap

or not. Since the feasible placement region of each flip-flop can be easily identified after the

coordinate transformation, we simply

Power Reduction Approach by using Multi-Bit Flip-Flops

International Journal of Emerging Engineering Research and Technology 66

Fig. 8. Overlapping relation between available placement regions of f 1 and f 2. use (3) and (4) to determine

whether two flip-flops overlap or not.

DIS‒ X(f1,f2) < 1/2 (W(f1) + W(f2)) (3)

 DIS‒ Y(f1,f2) < 1/2 (H(f1) + H(f2)) (4)

where W(f1) and H(f1) [W(f2) and H(f2)] denote the width and height of R(f1) [R(f2)], respectively,

in Fig. 8, and the function DIS_X(f1, f2) and (DIS_Y(f1, f2)) calculates the distance between centers

of R(f1) and R(f2) in x-direction (y-direction).

3.2. Build a Combination Table

If we want to replace several flip-flops by a new flip-flop fi
ꞌ

(note that the bit width of fi
ꞌ
 should

equal to the summation of bit widths of these flip-flops), we have to make sure that the new flip-flop

fi
ꞌ

 is provided by the library L when the feasible regions of these flip-flops overlap. In this paper, we
will build a combination table, which records all possible combinations of flip-flops to get feasible

flip-flops before replacements. Thus, we can gradually replace flip-flops according to the order of the

combinations of flip-flops in this table. Since only one

combination of flip-flops needs to be

considered in each time, the search time can be reduced greatly. In this subsection, we illustrate how

to build a combination table. The pseudo code for building a combination table T is shown in

Algorithm 1. We use a binary tree to represent one combination for simplicity. Each node in the tree

denotes one type of a flip-flop in L. The types of flip-flops denoted by leaves will constitute the type
of the flip-flop in the root. For each node, the bit width of the corresponding flip-flop equals to the bit

width summation of flip-flops denoted by its left and right child [please see Fig. 9(e) for example].

Let ni denote one combination in T, and b(ni) denote its bit width. In the beginning, we initialize a
combination ni for each kind of flip-flops in L (see Line 1). Then, in order to represent all

combinations by using a binary tree, we may add pseudo types, which denote those flip-flops that are

not provided by the library, (see Line 2). For example, assume that a library only supports two kinds
of flip-flops whose bit widths are 1 and 4, respectively. In order to use a binary tree to denote a

combination whose bit width is 4, there must exist flip-flops whose bit widths are 2 and 3 in L [please

see the last two binary trees in Fig. 9(e) for example].

Fig. 9. Example of building the combination table. (a) Initialize the library L and the combination
table T . (b) Pseudo types are added into L, and the corresponding binary tree is also build for each

combination in T. (c) New combination n3 obtained from combining two n1s. (d) New combination n4

is obtained from combining n1 and n3, and the combination n5 is obtained from combining two n3s.
(e) New combination n6 is obtained from combining n1 and n4. (f) Last combination table is obtained

after deleting the unused combination in (e).

Thus, we have to create two pseudo types of flip-flops with 2- and 3-bit if L does not provide these
flip-flops. Function Insert Pseudo Type in algorithm 1 shows how to create pseudo types. Let bmax and

bmin denote the maximum and minimum bit width of flip-flops in L. In Insert Pseudo Type, it inserts

all flip-flops whose bit widths are larger than bmin and smaller than bmax into L if they are not provided

by L originally. After this procedure, all combinations in L are sorted according to their bit widths in
the ascending order (Line 3). At present, all combinations are represented by binary trees with 0-level.

Thus, we would assign NULL to its right and left child (see Lines 4 and 5). Finally, for every two

kinds of combinations in T, we try to combine them to create a new combination (Lines 6–13). If the
new combination is the flip-flop of a feasible type (this can be checked by the function Type Verify),

we would add it to the table T. In the function Type Verify, we first add the bit widths of the two

combinations together and store the result in bsum (see Line 1 in Type Verify). Then, we will add a

new combination n to T with bit width bsum if L has such kind of a flip-flop. After these procedures,
there may exist some duplicated or unused combinations in T. Thus, we have to delete them from the

M.Sivaprasad Reddy & B.Mysura Reddy

International Journal of Emerging Engineering Research and Technology 67

table and the two functions Duplicate Combination Delete and Unused Combination Delete are called

for the purpose (Lines 14 and 15).

Power Reduction Approach by using Multi-Bit Flip-Flops

International Journal of Emerging Engineering Research and Technology 68

M.Sivaprasad Reddy & B.Mysura Reddy

International Journal of Emerging Engineering Research and Technology 69

In DuplicateCombinationDelete, it checks whether the duplicated combinations exist or not. If the

duplicated combinations exist, only the one with the smallest height of its corresponding binary tree is
left and the others are deleted. In Unused Combination Delete, it checks the combinations whose

corresponding type is pseudo type in L. If the combination is not included into any other

combinations, it will be deleted. For example, suppose a library L only provides two types of flip-
flops, whose bit widths are 1 and 4 (i.e., bmin = 1 and bmax = 4), in Fig. 9(a). We first initialize two

combinations n1 and n2 to represent these two types of flip-flops in the table T [see Fig. 9(a)].

Next, the function Insert Pseudo Type is performed to check whether the flip-flop types with bit
widths between 1 and 4 exist or not. Thus, two kinds of flip-flop types whose bit widths are 2 and 3

are added into L, and all types of flip-flops in L are sorted according to their bit widths [see Fig. 9(b)].

Now, for each combination in T, we would build a binary tree with 0-level, and the root of the binary
tree denotes the combination. Next, we try to build new legal combinations according to the present

combinations. By combing two 1-bit flip-flops in the first combination, a new combination n3 can be

obtained [see Fig. 9(c)]. Similarly, we can get a new combination n4 (n5) by combining n1 and n3(two
n3’s) [see Fig. 9(d)]. Finally, n6 is obtained by combing n1 and n4. All possible combinations of flip-

flops are shown in Fig. 9(e). Among these combinations, n5 and n6 are duplicated since they both

represent the same condition, which replaces four 1-bit flip-flops by a 4-bit flip-flop. To speed up our

program, n6 is deleted from T rather than n5 because its height is larger. After this procedure, n4
becomes an unused combination [see Fig. 9(e)] since the root of binary tree of n4 corresponds to the

pseudo type, type3, in L and it is only included in n6. After deleting n6, n4 is also need to be deleted.

Power Reduction Approach by using Multi-Bit Flip-Flops

International Journal of Emerging Engineering Research and Technology 70

The last combination table T is shown in Fig. 9(f). In order to enumerate all possible combinations in

the combination table, all the flip-flops whose bit widths range between bmax and bmin and do not exist
in L should be inserted into L in the above procedure. However, this is time consuming. To improve

the running time, only some types of flip-flops need to be inserted. There exist several choices if we

want to build a binary tree corresponding to a type type j . However, the complete binary tree has the
smallest height. Thus, for building a binary tree of a certain combination ni whose type is type j , only

the flip-flops whose bit widths are ([b(type j)/2]) and (b(type j)–[b(type j)/2]) should exist in L.

Algorithm 2 shows the enhanced procedure to insert flip-flops of pseudo types. For each typej in L,
the function PseudoTypeVerifyInsertion recursively checks the existence of flip-flops whose bit

widths around [b(type j)/2] and add them into L if they do not exist (see Lines 1 and 2). In the

function PseudoTypeVerifyInsertion, it divides the bit width b(type j) into two parts [b(type j)/2] and

[b(type j)/2] ([b(type j)/2] and b(type j)–[b(type j)/2]) if b(type j) is an even (odd) number (see Lines
1–4 in PseudoTypeVerifyInsertion), and it would insert a pseudo type type j into L if the type is not

provided by L and its bit width is larger than the minimum bit width (denoted by bmin) of flip-flops in

L (see Lines 5–8 in PseudoTypeVerifyInsertion). The same procedure repeats in the new created type.
Note that this method works only when the 1-bit type exists in L. We still have to insert pseudo flip-

flops by the function InsertPseudoType in Algorithm 1 if the 1-bit flip-flop is not provided by L. For

example, assume a library L only provides two kinds of flip-flops whose bit widths are 1 and 7. In the
new procedure, it first adds two pseudo types of flip-flops whose bit widths are 3 and 4, respectively,

for the flip-flop with 7-bit (i.e., L becomes [1 3 4 7]). Next, the flip-flop whose bit width is 2 is added

to L for the flipflop with 4-bit (i.e., L becomes [1 2 3 4 7]). For the flip-flop with 3-bit, the procedure

stops because flop-flops with 1 and 2 bits already exist in L. In the new procedure, we do not need to
insert 5- and 6-bit pseudo types to L.

3.3. Merge Flip-Flops

We have shown how to build a combination table in Section III-B. Now, we would like to show how
to use the combination table to combine flip-flops in this subsection. To reduce the complexity, we

first divide the whole placement region into several sub regions, and use the combination table to

replace flip-flops in each sub region. Then, several sub regions are combined into a larger sub region

and the flip-flops are replaced again so that those flip-flops in the neighboring sub regions can be
replaced further. Finally, those flip-flops with pseudo types are deleted in the last stage because they

are not provided by the supported library. Fig. 10 shows this flow.

Region Partition (Optional): To speed up our problem, we divide the whole chip into several
subregions. By suitable

M.Sivaprasad Reddy & B.Mysura Reddy

International Journal of Emerging Engineering Research and Technology 71

Fig11. Example of region partition with six bins in one subregion.

Partition, the computation complexity of merging flip-flops can be reduced significantly (the related

quantitative analysis will be shown in Section V). As shown in Fig. 11, we divide the region into

several subregions, and each subregion contains six bins, where a bin is the smallest unit of a
subregion.

Replacement of Flip-flops in Each Subregion:Before illustrating our procedure to merge flip-flops, we

first give an equation to measure the quality if two flip-flops are going to be replaced by a new flip-
flop as follows:

cost = routing_length – α × √available_ area

Where routing_length denotes the total routing length between the new flip-flop and the pins

connected to it, and available_ area represents the available area in the feasible region for placing the
new flip-flop. α is a weighting factor (the related analysis of the value α will be shown in Section V).

The cost function includes the term routing_length to favor a replacement that induces shorter

wirelength. Besides, if the region has larger available space to place a new flip-flop, it implies that it

Power Reduction Approach by using Multi-Bit Flip-Flops

International Journal of Emerging Engineering Research and Technology 72

has higher opportunities to combine with other flip-flops in the future and more power reduction.

Thus, we will give it a smaller cost. Once the flip-flops cannot be merged to a higher-bit type (as the
4-bit combination n4 in Fig. 9), we ignore the available_area in the cost function, and hence α is set to

0. After a combination has been built, we will do the replacements of flip-flops according to the

combination table. First, we link flip-flops below the combinations corresponding to their types in the
library. Then, for each combination n in T, we serially merge the flip-flops linked below the left child

and the right child of n from leaves to root. Algorithm 3 shows the procedure to get a new flip-flop

corresponding to the combination n. Based on its binary tree, we can find the combinations associated
with the left child and right child of the root. Hence, the flip-flops in the lists, named lleft and lright,

linked below the combinations of its left child and its right child are checked (see Lines 2 and 3).

Then, for each flip-flop fi in lleft , the best flip-flop fbest in lright, which is the flip-flop that can be

merged with fi with the smallest cost recorded in cbest, is picked. For each pair of flip-flops in the
respective list, the combination cost [based on (5)] is computed if they can be merged and the pair

with the smallest cost is chosen (see Lines 4–11). Finally, we add a new flip-flop f

ꞌ in the list of the

combination n and remove the picked flip-flops which constitutes the f ꞌ (see Lines 12–14). For
example, given a library containing three types of flipflops (1-, 2-, and 4-bit), we first build a

combination table T as shown in Fig. 12(a). In the beginning, the flip-flops with various types are,

respectively, linked below n1, n2, and n3 in their types in the library. Then, for each combination n in
T, we serially merge the flip-flops linked below the left child and the right child of n from leaves to

root. Algorithm 3 shows the procedure to get a new flip-flop corresponding to the combination n.

Based on its binary tree, we can find the combinations associated with the left child and right child of

the root. Hence, the flip-flops in the lists, named lleft and lright, linked below the combinations of its left
child and its right child are checked (see Lines 2 and 3). Then, for each flip-flop f i in lleft, the best flip-

flop fbest in lright, which is the flip-flop that can be merged with fi with the smallest cost recorded in cbest

, is picked. For each pair of flip-flops in the respective list, the combination cost [based on (5)] is
computed if they can be merged and the pair with the smallest cost is chosen (see Lines 4–11).

M.Sivaprasad Reddy & B.Mysura Reddy

International Journal of Emerging Engineering Research and Technology 73

Fig. 12. Example of replacements of flip-flops. (a) Sets of flip-flops before merging. (b) Two 1-bit

flip-flops, f1 and f2, are replaced by the 2-bit flip-flop f3. (c) Two 1-bit flip-flops, f4 and f5, are replaced
by the 2-bit flip-flop f6. (d) Two 2-bit flip-flops, f7 and f8, are replaced by the 4-bit flip-flop f9. (e) Two

2-bit flip-flops, f3 and f6, are replaced by the 4-bit flip-flop f10. (f) Sets of flip-flops after merging.

Finally, we add a new flip-flop f ꞌ in the list of the combination n and remove the picked flip-flops
which constitutes the f ꞌ (see Lines 12–14). For example, given a library containing three types of

flipflops (1-, 2-, and 4-bit), we first build a combination table T as shown in Fig. 12(a). In the

beginning, the flip-flops with various types are, respectively, linked below n1, n2 , and n3 in T

according to their types. Suppose we want to form a flipflop in n4, which needs two 1-bit flip-flops
according to the combination table. Each pair of flip-flops in n1 are selected and checked to see if

they can be combined (note that they also have to satisfy the timing and capacity constraints described

in Section II). If there are several possible choices, the pair with the smallest cost value is chosen to
break the tie. In Fig. 12(a), f1 and f2 are chosen because their combination gains the smallest cost.

Thus, we add a new node f3 in the list below n4, and then delete f1 and f2 from their original list [see

Fig. 12(b)]. Similarly, f4 and f5 are combined to obtain a new flip-flop f6, and the result is shown in

Fig. 12(c). After all flip-flops in the combinations of 1-level trees (n4 and n5) are obtained as shown in
Fig. 12(d), we start to form the flip-flops in the combinations of 2-level trees (n6, and n7). In Fig.

12(e), there exist some flip-flops in the lists below n2 and n4, and we will merge them to get flip-flops

in n6 and n7, respectively. Suppose there is no overlap region between the couple of flipflops in n2 and
n4. It fails to form a 4-bit flip-flop in n6. Since the 2-bit flip-flops f3 and f6 are mergeable, we can

combine them to obtain a 4-bit flip-flop f10 in n7. Finally, because there exists no couple of flip-flops

that can be combined further, the procedure finishes as shown in Fig. 12(f). If the available overlap
region of two flip-flops exists, we can assign a new one to replace those flip-flops. be placed in the

grid that makes the wirelength between the flip-flop and its connected pins smallest. If the capacity

constraint of the bin,Bk, which the grid belongs to will be violated after the new flip-flop is placed

on that grid, we will search the bins near Bk to find a new available grid for the new flip-flop. If none
of bins which are overlapped with the available region of new flip-flop can satisfy the capacity

constraint after the placement of new flip-flop, the program will stop the replacement of the two flip-

flops.

Fig13. Combination of flip-flops near subregion boundaries (a) Result of replace flip-flops in each subregion.

(b) Result of replace flip-flops in each new subregion which is ob tained from combining twelve subregion in

(a).

Power Reduction Approach by using Multi-Bit Flip-Flops

International Journal of Emerging Engineering Research and Technology 74

Fig14. Combination of subregions to a larger one (a) Placement is originally partitioned into 16 subregions for

replacement. (b) Subregion bounded by bold line is obtained from combining four neighboring subregions in (a)

(c) Subregion bounded by bold line is obtained from combining four subregions in (b).

Bottom-Up Flow of Subregion Combinations (Optional): As shown in Fig. 13(a), there may exist
some flip-flops in the boundary of each subregion that cannot be replaced by any flip-flop in its

subregion. However, these flip-flops may be merged with other flip-flops in neighboring subregions

as shown in Fig. 13(b). Hence, to reduce power consumption further more, we can combine several
subregions to obtain a larger subregion and perform the replacement again in the new subregion

again. The procedure repeats until we cannot achieve any replacement in the new subregion. Fig. 14

gives an example for this hierarchical flow. As shown in Fig. 14(a), suppose we divide a chip into 16

subregions in the beginning. After the replacement of flip-flops is finished in each subregion, four
subregions are combined to get a larger one as shown in Fig. 14(b). Suppose some flip-flops in new

subregions still can be replaced by new flip-flops in other new subregions, we would combine four

subregions in Fig. 14(b) to get a larger one as shown in Fig. 14(c) and perform the replacement in the
new subregion again. As the procedure

repeats in a higher level, the number of mergeable flip-flops gets fewer. However, it would spend

much time to get little improvement for power saving. To consider this issue, there exists a trade-off
between power saving and time consuming in our program.

De-Replace and Replace (Optional): Since the pseudo type is an intermediate type, which is used to

enumerate all possible combinations in the combination table T, we have to remove the flip-flops

belonging to pseudo types. Thus, after the above procedures have been applied, we would perform de-
replacement and replacement functions if there exists any flop-flops belonging to a pseudo type. For

example, if there still exists a flip-flop, fi , belonging to n3 after replacements in Fig. 9(f), we have to

de-replace fi into two flip-flops originally belongs to n1. After de-replacing, we will do the
replacements of flip-flops according to T without consideration of the combinations whose

corresponding type is pseudo in L.

4. COMPUTATION COMPLEXITY

This section analyzes the timing complexity of this algorithm. The core is to continuously seek

suitable combinations, and find the optimized solution among all possibilities. Hence, the timing

complexity depends on the operation count of the function of deciding whether two flip-flops can
combine together or not. For example, assume all flip-flops are of the same type, 1-bit flip-flop. In the

beginning, each flip-flop will try to combine with all the other flip-flops.

Fig15(a) Influence of the region size on power.

M.Sivaprasad Reddy & B.Mysura Reddy

International Journal of Emerging Engineering Research and Technology 75

If the first flipflop finds the best solution, the two 1-bit flip-flops will form a 2-bit flip-flop and be

removed from the list. Then, the second flip-flop will perform identical procedures. Let N represent
the number of flip-flops per circuit. For an exhaustive run for all the 1-bit cells, the timing complexity

is O(N
2
). If the largest flip-flop the library provided is M-bit, the size of the combination table is

O(Mlog 2(M)) when we use pseudo type flip-flops. The total timing complexity is O(Mlog2(M)× N
2
),

equivalently equal to O(N
2
) because the value of M is much less than the value of N.

Fig16(a) Influence of the weighting factor on power reduction. (b) Influence of the region size on execution

time. (b) Influence of the weighting factor on wire length reduction.

5. EXPERIMENTAL RESULTS

Fig17. Average computational complexity of our algorithm

Power Reduction Approach by using Multi-Bit Flip-Flops

International Journal of Emerging Engineering Research and Technology 76

M.Sivaprasad Reddy & B.Mysura Reddy

International Journal of Emerging Engineering Research and Technology 77

6. CONCLUSION AND FUTURE WORK

This paper has proposed an algorithm for flip-flop replacement or power reduction in digital

integrated circuit design. The procedure of flip-flop replacements is depending on the combination

table, which records the relationships among the flip-flop types. The concept of pseudo type is

introduced to help to enumerate all possible combinations in the combination table. By the guidelines
of replacements from the combination table, the impossible combinations of flip-flops will not be

considered that decreases execution time. Besides power reduction, the objective of minimizing the

total wirelength also be considered to the cost function. The experimental results show that our
algorithm can achieve a balance between power reduction and wirelength reduction. Moreover, even

for the largest case which contains about 1 700 000 flip-flops, our algorithm can maintain the

performance of power and wirelength reduction in the reasonable processing time.

REFERENCES

[1] P. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and R. L. Allmon, “High-

performance microprocessor design,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 676–686,
May 1998.

[2] W. Hou, D. Liu, and P.-H. Ho, “Automatic register banking for lowpower clock trees,” in Proc.
Quality Electron. Design, San Jose, CA, Mar. 2009, pp. 647–652.

[3] D. Duarte, V. Narayanan, and M. J. Irwin, “Impact of technology scaling in the clock power,” in

Proc. IEEE VLSI Comput. Soc. Annu. Symp., Pittsburgh, PA, Apr. 2002, pp. 52–57.

[4] H. Kawagachi and T. Sakurai, “A reduced clock-swing flip-flop (RCSFF) for 63% clock power

reduction,” in VLSI Circuits Dig. Tech. Papers Symp., Jun. 1997, pp. 97–98.

[5] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda, and Q. Wang, “Power-aware placement,” in Proc.

Design Autom. Conf., Jun. 2005, pp. 795–800. SHYU et al.: EFFECTIVE AND EFFICIENT

APPROACH FOR POWER REDUCTION 635

[6] Y.-T. Chang, C.-C. Hsu, P.-H. Lin, Y.-W. Tsai, and S.-F. Chen, “Post-placement power

optimization with multi-bit flip-flops,” in Proc. IEEE/ACM Comput.-Aided Design Int. Conf.,
San Jose, CA, Nov. 2010, pp. 218–223.

[7] Faraday Technology Corporation [Online]. Available: http://www.faraday-tech.com/index.html

[8] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an undirected graph,” ACM
Commun., vol. 16, no. 9, pp. 575–577, 1973.

[9] CAD Contest of Taiwan [Online]. Available: http://cad_contest.cs. nctu.edu.tw/cad11

http://cad_contest.cs/

