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Abstract: Power has become a burning issue in modern VLSI design. In modern integrated circuits, the power 

consumed by clocking gradually takes a dominant part. Given a design, we can reduce its power consumption 

by replacing some flip-flops with fewer multi-bit flip-flops. However, this procedure may affect the performance 

of the original circuit. Hence, the flip-flop replacement without timing and placement capacity constraints 

violation becomes a quite complex problem. To deal with thedifficulty efficiently, we have proposed several 
techniques. First, we perform a co-ordinate transformation to identify those flipflops that can be merged and 

their legal regions. Besides, we show how to build a combination table to enumerate possible combinations of 

flip-flops provided by a library. Finally, we use a hierarchical way to merge flip-flops. Besides power reduction, 

the objective of minimizing the total wirelength is also considered. The time complexity of our algorithm is 

Θ(n1.12) less than the empirical complexity of Θ(n2). According to the experimental results, our algorithm 

significantly reduces clock power by 20–30% and the running time is very short. In the largest test case, which 

contains 1 700 000 flip-flops, our algorithm only takes about 5 min to replace flip-flops and the power reduction 

can achieve 21%. 

Keywords: Clock power reduction, merging, multi-bit flip-flop, replacement, wire length.

 

1. INTRODUCTION 

Due to the popularity of portable electronic products,low power system has attracted more attention in 

recent years. As technology advances, an systems-on-a-chip (SoC) design can contain more and more 

components that lead to a higher power density. This makes power dissipation reach the limits of what 

packaging, cooling or other infrastructure can support. Reducing the power consumption not only can 
enhance battery life but also can avoid the overheating problem, which would increase the difficulty 

of packaging or cooling [1], [2]. Therefore, the consideration of power consumption in complex SOCs 

has become a big challenge to designers. Moreover, in modern VLSI designs, power consumed by 
clocking has taken a major part of the whole design especially for those designs using deeply scaled 

CMOS technologies [3]. Thus, several methodologies [4], [5] have been proposed to reduce the power 

consumption of clocking. Manuscript received February 1, 2011; revised August 22, 2011; accepted 

February 16, 2012. Date of publication April 5, 2012; date of current version March 18, 2013. This 
work was supported in part by the National Science Council of Taiwan under Grant 100-2220-E-006-

005. The authors are with the Department of Electrical Engineering, National Cheng-Kung 

University,Tainan70101,Taiwan(eail:kkttkkk@sscas.ee.ncku.edu.tw;jmlin@ee.ncku.edu.tw;gppo@ss
cas.ee.ncku.edu.tw;lcw@sscas.ee.ncku.edu.tw; ibrius@gmail.com; soon@mail.ncku.edu.tw). Color 

versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org. 

Given a design that the locations of the cells have been determined, the power consumed by clocking 
can be reduced further by replacing several flip-flops with multi-bit flip-flops. During clock tree 

synthesis, less number of flip-flops means less number of clock sinks. Thus, the resulting clock 

network would have smaller power consumption and uses less routing resource. Besides, once more 

smaller flip-flops are replaced by larger multi-bit flip-flops, device variations in the corresponding 
circuit can be effectively reduced. As CMOS technology progresses, the driving capability of an 

inverter-based clock buffer increases significantly. The driving capability of a clock buffer can be 

evaluated by the number of minimum-sized inverters that it can drive on a given rising or falling time. 
Fig. 1 shows the maximum number of minimum-sized inverters that can be driven by a clock buffer in 

different processes. Because of this phenomenon, several flip-flops can share a common clock buffer 

to avoid unnecessary power waste. Fig. 2 shows the block diagrams of 1- and 2-bit flip-flops. If we 
replace the two 1-bit flip-flops as shown in Fig. 2(a) by the 2-bit flip-flop as shown in Fig. 2(b), the 
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total power consumption can be reduced because the two 1-bit flip-flops can share the same clock 

buffer. However, the locations of some flip-flops would be changed after this replacement, and thus 
the wirelengths of nets connecting pins to a flip-flop are also changed. To avoid violating the timing 

constraints, we restrict that the wirelengths of nets connecting pins to a flip-flop cannot be longer than 

specified values after this process. Besides, to guarantee that a new flipflop can be placed within the 
desired region, we also need to consider the area capacity of the region. As shown in Fig. 3(a), after 

the two 1-bit flip-flops f1 and f2 are replaced by the 2-bit flip-flop f3, the wirelengths of nets net1 , net2 , 

net3 , and net4  are changed. To avoid the timing violation caused by the replacement, the Manhattan 
distance of new nets net1 , net2 , net3 , and net4 cannot be longer than the specified values. In Fig. 3(b), 

we divide the whole placement region into several bins, and each bin has an area capacity denoting 

the remaining area that additional cells can be placed within it. Suppose the area of f3 is 7 and f3 is 

assigned to be placed in the same bin as f1. We cannot place f3 in that bin since the remaining area of 
the bin is smaller than the area of f3. In addition to the considerations mentioned in the above, we also 

need to check whether the cell library provides the type of the new flip-flop. For example, we have to 

check the availability of a 3-bit flip-flop in the cell library when we desire to replace 1- and 2-bit flip-
flops by a 3-bit flip-flop. 

 

Fig1. Maximum loading number of a minimum-sized inverter of different technologies (rising time 250 ps). 

 

Fig2. Example of merging two 1-bit flip-flops into one 2-bit flip-flop.(a) Two 1-bit flip-flops (before merging). 

(b) 2-bit flip-flop (after merging). 

1.1. Related Work 

 Chang et al. [6] first proposed the problem of using multi-bit flip-flops to reduce power consumption 
in the post-placement stage. They use the graph-based approach to deal with this problem. In a graph, 

each node represents a flip-flop. If two flip-flops can be replaced by a new flip-flop without violating 

timing and capacity constraints, they build an edge between the corresponding nodes. After the graph 
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is built, the problem of replacement of flip-flops can be solved by finding an m-clique in the graph. 

The flip-flops corresponding to the nodes in an m-clique can be replaced by an m-bit flipflop. They 
use the branch-and-bound and backtracking algorithm [8] to find all m-cliques in a graph. Because 

one node (flip-flop) may belong to several m-cliques (m-bit flip-flop), they use greedy heuristic 

algorithm to find the maximum independent set of cliques, which every node only belongs to one 
clique, while finding m-cliques groups. However, if some nodes correspond to k-bit flip-flops that k 

1, the bit width summation of flip-flops corresponding to nodes in an m-clique, j , may not equal m. 

If the type of a j -bit flip-flop is not supported by the library, it may be time-wasting in finding 

impossible combinations of flip-flops. 

1.2. Our Contributions 

 The difficulty of this problem has been illustrated in the above descriptions. To deal with this 

problem, the direct way is to repeatedly search a set of flip-flops that can be replaced by a new multi-
bit flip-flop until none can be done. However, as the number of flip-flops in a chip increases 

dramatically, the complexity would increase exponentially, which makes the method impractical. To 

handle this problem more efficiently and get better results, we have used the following approaches. 1) 

To facilitate the identification of mergeable flip-flops, we transform the coordinate system of cells. In 
this way, 

 

Fig3(a). Combination of flip-flops possibly increases the wire length (b) Combination of flip-flops also changes 

the density. 

The memory used to record the feasible placement region can also be reduced. 2) To avoid wasting 

time in finding impossible combinations of flip-flops, we first build a combination table before 
actually merging two flip-flops. For example, if a library only provides three kinds of flip-flops, 

which are 1-, 2-, and 3-bit, we first separate the flip-flops into three groups. Therefore, the 

combination of 1- and 3-bit flip-flops is not considered since the library does not provide the type of 

4-bit flip-flop. 3) We partition a chip into several subregions and perform replacement in each 
subregion to reduce the complexity. However, this method may degrade the solution quality. To 

resolve the problem, we also use a hierarchical way to enhance the result. The rest of this paper is 

organized as follows. Section II describes the problem formulation. Section III presents the proposed 
algorithm. Section IV evaluates the computation complexity. Section V shows the experimental 

results. Finally, we draw a conclusion in SectionVI. 

2. PROBLEM FORMULATION 

Before giving our problem formulation, we need the following notations.  

1) Let fi denote a flip-flop and bi denote its bit width. 

2) Let A( fi ) denote the area of fi .  
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3) Let P( fi ) denote all the pins connected to fi .  

4) Let M(pi , fi ) denote the Manhattan distance between a pin pi and fi , where pi is an I/O pin that 
connectsto fi . 

5) Let S(pi ) denote the constraint of maximum wire length for a net that connects to a pin pi of a flip-

flop.  

6) Given a placement region, we divide it into several bins [see Fig. 3(b) for example], and each bin is 

denoted by Bk. 

7) Let RA(Bk) denote the remaining area of the bin Bk that can be used to place additional cells.  

8) Let L denote a cell library which includes different flip-flop types (i.e., the bit width or area in each 

type is different). 

 

Fig4. Defined slack region of the pin. 

Given a cell library L and a placement which contains a lot of flip-flops, our target is to merge as 

many flip-flops as possible in order to reduce the total power consumption. If we want to replace 

some flip-flops fi ,..., f j−1 by a new flipflop fj , the bit width of fj must be equal to the summation of bit 

widths in the original ones (i.e., Σbi = bj , i = 1 to j−1). Besides, since the replacement would change 
the routing length of the nets that connect to a flip-flop, it inevitably changes timing of some paths. 

Finally, to ensure that a legalized placement can be obtained after the replacement, there should exist 

enough space in each bin. To consider these issues, we define two constraints as follows. 1) Timing 
Constraint for a Net Connecting to a Flip-Flop fj from a Pin pi : To avoid that timing is affected after 

the replacement, the Manhattan distance between pi and fj cannot be longer than the given constraint 

S(pi ) defined on the pin pi [i.e., M(pi , fj ) ≤ S(pi )]. Based on each timing constraint defined on a pin, 
we can find a feasible placement region for a flip-flop fj . See Fig. 4 for example. Assume pins p1 and 

p2 connect to a 1-bit flip-flop f1. Because the length is measured by Manhattan distance, the feasible 

placement region of f1 constrained by the pin pi [i.e., M(pi , f1) ≤ S(pi )] would form a diamond 

region, which is denoted by Rp(pi ), i = 1 or 2. See the region enclosed by dotted lines in the figure. 
Thus, the legal placement region of f1 would be the overlapping region enclosed by solid lines, which 

is denoted by R( f1). R( f1) is the overlap region of Rp(p1) and Rp(p2). 2) Capacity Constraint for Each 

Bin Bk : The total area of flip-flops intended to be placed into the bin Bk cannot be larger than the 
remaining area of the bin Bk (i.e., ΣA( fi ) ≤ A(Bk)). 

3. OUR ALGORITHM 

Our design flow can be roughly divided into three stages. Please see Fig. 5 for our flow. In the 
beginning, we have to identify a legal placement region for each flip-flop fi . First, the feasible 

placement region of a flip-flop associated i
th

 different pins are found based on the timing constraints 

defined on the pins. Then, the legal placement region of the flip-flop fi can be obtained by the 
overlapped area of these regions. However, because these regions are in the diamond shape, it is not 

easy to identify the overlapped area.Therefore, the overlapped area can be identified more easily if we 

can transform the coordinate system of cells to get rectangular regions. In the second stage, we would 

like to build a combination table, which defines all possible combinations of flip-flops in order to get 
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a new multi-bit flip-flop provided by the library. The flip-flops can be merged with the help of the 

table. After the legal placement regions of flip-flops are found and the combination table is built, we 
can use them to merge flip-flops. To speed up our program, we will divide a chip into several bins 

and merge flip-flops in a local bin. However, the flip-flops in different bins may be mergeable. Thus, 

we have to combine several bins into a larger bin and repeat this step until no flip-flop can be merged 
anymore. In this section, we would detail each stage of our method. In the first subsection, we show a 

simple formula to transform the original coordination system into a new one so that a legal placement 

region for each flip-flop can be identified more easily. The second subsection presents the flow of 
building the combination table. Finally, the replacements of flip-flops will be described in the last 

subsection. defined on the pins. Then, the legal placement region of the flip-flop fi can be obtained by 

the verlapped area of hese regions. However, because these regions are in th diamond shape, it is not 

easy to identify the overlapped area Therefore, the overlapped area can be identified more easily if we 
can transform the coordinate system of cells to get rectangular regions. 

In the second stage, we would like to build a combination table, which defines all possible 

combinations of flip-flops in order to get a new multi-bit flip-flop provided by the library. The flip-
flops can be merged with the help of the table. After the legal placement regions of flip-flops are 

found and the combination table is built, we can use them to merge flip-flops. To speed up our 

program, we will divide a chip into several bins and merge flip-flops in a local bin. However, the flip-
flops in different bins may be mergeable. Thus, we have to combine several bins into a larger bin and 

repeat this step until no flip-flop can be merged anymore. In this section, we would detail each stage 

of our method. In the first subsection, we show a simple formula to transform the original 

coordination system into a new one so 

  

Fig5. Flow chart of our algorithm. 

that a legal placement region for each flip-flop can be identified more easily. The second subsection 

presents the flow of building the combination table. Finally, the replacements of flip-flops will be 

described in the last subsection. 

3.1. Transformation of Placement Space 

We have shown that the shape of a feasible placement region associated with one pin pi connecting to 

a flip-flop fi would be diamond in Section II. Since there may exist several pins connecting to f i , the 

legal placement region of fi are the overlapping area of several regions. As shown in Fig. 6(a), there 

are two pins p1 and p2 connecting to a flip-flop f1, and the feasible placement regions for the two pins 

are enclosed by dotted lines, which are denoted by Rp(p1) and Rp(p2), respectively. Thus, the legal 

placement region R( f1) for f1 is the overlapping part of these regions. In Fig. 6(b), R( f1) and R( f2) 

represent the legal placement regions of f1 and f2. Because R( f1) and R( f2) overlap, we can replace f1 

and f2 by a new flip-flop f3 without violating the timing constraint, as shown in Fig. 6(c). However, it 
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is not easy to identify and record feasible placement regions if their shapes are diamond. Moreover, 

four coordinates are required to record an overlapping region [see Fig. 7(a)]. Thus, if we can rotate 

each segment 45
°
, the shapes of all regions would become rectangular, which makes identification of 

overlapping regions become very simple. 

 

Fig. 6. (a) Feasible regionsRp (p1) and Rp(p2) for pins p1 and p2 which are enclosed by dotted lines, 

and the legal region R( f1) for f1 which is enclosed by solid lines. (b) Legal placement regions R( f1) 

and R( f2) for f1 and f2, and the feasible area R3 which is the overlap region of R( f1) and R( f2). (c) 

New flip-flop f3 that can be used to replace f1 and f2 without violating timing constraints for all pins 

p1, p2, p3, and p4 . 

 

Fig7(a). Overlapping region of two diamond shapes. (b) Rectangular shapes obtained by rotating the diamond 

shapes in (a) by 45°. 

For example, the legal placement region, enclosed by dotted lines in Fig. 7(a), can be identified more 

easily if we change its original coordinate system [see Fig. 7(b)]. In such condition, we only need two 

coordinates, which are the left-bottom corner and right-top corner of a rectangle, as shown in Fig. 

7(b), to record the overlapped area instead of using four coordinates. The equations used to transform 

coordinate system are shown in (1) and (2). Suppose the location of a point in the original coordinate 

system is denoted by (x, y). After coordinate transformation, the new coordinate is denoted by (x′ , y
ꞌ
 

). In the original transformed equations, each value needs to be divided by the square root of 2, which 

would induce a longer computation time. Since we only need to know the relative locations of flip-

flops, such computation are ignored in our method. Thus, we use x″ and y″, to denote the coordinates 

of transformed locations 

Then, we can find which flip-flops are mergeable according to whether their feasible regions overlap 

or not. Since the feasible placement region of each flip-flop can be easily identified after the 

coordinate transformation, we simply  
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Fig. 8. Overlapping relation between available placement regions of f 1 and f 2. use (3) and (4) to determine 

whether two flip-flops overlap or not. 

DIS‒ X(f1,f2) < 1/2 (W(f1) + W(f2))                                      (3) 

 DIS‒ Y(f1,f2) <  1/2  (H(f1) + H(f2))                          (4)  

where W( f1) and H( f1) [W( f2) and H( f2)] denote the width and height of R( f1) [R( f2)], respectively, 

in Fig. 8, and the function DIS_X( f1, f2) and (DIS_Y( f1, f2)) calculates the distance between centers 

of R( f1) and R( f2) in x-direction (y-direction). 

3.2. Build a Combination Table 

If we want to replace several flip-flops by a new flip-flop fi
ꞌ 

(note that the bit width of fi
ꞌ
 should 

equal to the summation of bit widths of these flip-flops), we have to make sure that the new flip-flop 

fi
ꞌ

 is provided by the library L when the feasible regions of these flip-flops overlap. In this paper, we 
will build a combination table, which records all possible combinations of flip-flops to get feasible 

flip-flops before replacements. Thus, we can gradually replace flip-flops according to the order of the 

combinations of flip-flops in this table. Since only one
 
combination of flip-flops needs to be 

considered in each time, the search time can be reduced greatly. In this subsection, we illustrate how 

to build a combination table. The pseudo code for building a combination table T is shown in 

Algorithm 1. We use a binary tree to represent one combination for simplicity. Each node in the tree 

denotes one type of a flip-flop in L. The types of flip-flops denoted by leaves will constitute the type 
of the flip-flop in the root. For each node, the bit width of the corresponding flip-flop equals to the bit 

width summation of flip-flops denoted by its left and right child [please see Fig. 9(e) for example]. 

Let ni denote one combination in T, and b(ni ) denote its bit width. In the beginning, we initialize a 
combination ni for each kind of flip-flops in L (see Line 1). Then, in order to represent all 

combinations by using a binary tree, we may add pseudo types, which denote those flip-flops that are 

not provided by the library, (see Line 2). For example, assume that a library only supports two kinds 
of flip-flops whose bit widths are 1 and 4, respectively. In order to use a binary tree to denote a 

combination whose bit width is 4, there must exist flip-flops whose bit widths are 2 and 3 in L [please 

see the last two binary trees in Fig. 9(e) for example]. 

Fig. 9. Example of building the combination table. (a) Initialize the library L and the combination 
table T . (b) Pseudo types are added into L, and the corresponding binary tree is also build for each 

combination in T. (c) New combination n3 obtained from combining two n1s. (d) New combination n4 

is obtained from combining n1 and n3, and the combination n5  is obtained from combining two n3s. 
(e) New combination n6 is obtained from combining n1 and n4. (f) Last combination table is obtained 

after deleting the unused combination in (e). 

Thus, we have to create two pseudo types of flip-flops with 2- and 3-bit if L does not provide these 
flip-flops. Function Insert Pseudo Type in algorithm 1 shows how to create pseudo types. Let bmax and 

bmin denote the maximum and minimum bit width of flip-flops in L. In Insert Pseudo Type, it inserts 

all flip-flops whose bit widths are larger than bmin and smaller than bmax into L if they are not provided 

by L originally. After this procedure, all combinations in L are sorted according to their bit widths in 
the ascending order (Line 3). At present, all combinations are represented by binary trees with 0-level. 

Thus, we would assign NULL to its right and left child (see Lines 4 and 5). Finally, for every two 

kinds of combinations in T, we try to combine them to create a new combination (Lines 6–13). If the 
new combination is the flip-flop of a feasible type (this can be checked by the function Type Verify), 

we would add it to the table T. In the function Type Verify, we first add the bit widths of the two 

combinations together and store the result in bsum (see Line 1 in Type Verify). Then, we will add a 

new combination n to T with bit width bsum if L has such kind of a flip-flop. After these procedures, 
there may exist some duplicated or unused combinations in T. Thus, we have to delete them from the 
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table and the two functions Duplicate Combination Delete and Unused Combination Delete are called 

for the purpose (Lines 14 and 15).  
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In DuplicateCombinationDelete, it checks whether the duplicated combinations exist or not. If the 

duplicated combinations exist, only the one with the smallest height of its corresponding binary tree is 
left and the others are deleted. In Unused Combination Delete, it checks the combinations whose 

corresponding type is pseudo type in L. If the combination is not included into any other 

combinations, it will be deleted. For example, suppose a library L only provides two types of flip-
flops, whose bit widths are 1 and 4 (i.e., bmin = 1 and bmax = 4), in Fig. 9(a). We first initialize two 

combinations n1 and n2 to represent these two types of flip-flops in the table T [see Fig. 9(a)]. 

 

Next, the function Insert Pseudo Type is performed to check whether the flip-flop types with bit 
widths between 1 and 4 exist or not. Thus, two kinds of flip-flop types whose bit widths are 2 and 3 

are added into L, and all types of flip-flops in L are sorted according to their bit widths [see Fig. 9(b)]. 

Now, for each combination in T, we would build a binary tree with 0-level, and the root of the binary 
tree denotes the combination. Next, we try to build new legal combinations according to the present 

combinations. By combing two 1-bit flip-flops in the first combination, a new combination n3 can be 

obtained [see Fig. 9(c)]. Similarly, we can get a new combination n4 (n5) by combining n1 and n3(two 
n3’s) [see Fig. 9(d)]. Finally, n6 is obtained by combing n1 and n4. All possible combinations of flip-

flops are shown in Fig. 9(e). Among these combinations, n5 and n6 are duplicated since they both 

represent the same condition, which replaces four 1-bit flip-flops by a 4-bit flip-flop. To speed up our 

program, n6 is deleted from T rather than n5 because its height is larger. After this procedure, n4 
becomes an unused combination [see Fig. 9(e)] since the root of binary tree of n4 corresponds to the 

pseudo type, type3, in L and it is only included in n6. After deleting n6, n4 is also need to be deleted. 
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The last combination table T is shown in Fig. 9(f). In order to enumerate all possible combinations in 

the combination table, all the flip-flops whose bit widths range between bmax and bmin and do not exist 
in L should be inserted into L in the above procedure. However, this is time consuming. To improve 

the running time, only some types of flip-flops need to be inserted. There exist several choices if we 

want to build a binary tree corresponding to a type type j . However, the complete binary tree has the 
smallest height. Thus, for building a binary tree of a certain combination ni whose type is type j , only 

the flip-flops whose bit widths are ([b(type j )/2]) and (b(type j )–[b(type j )/2]) should exist in L. 

Algorithm 2 shows the enhanced procedure to insert flip-flops of pseudo types. For each typej in L, 
the function PseudoTypeVerifyInsertion recursively checks the existence of flip-flops whose bit 

widths around [b(type j )/2] and add them into L if they do not exist (see Lines 1 and 2). In the 

function PseudoTypeVerifyInsertion, it divides the bit width b(type j ) into two parts [b(type j )/2] and 

[b(type j )/2] ([b(type j )/2] and b(type j )–[b(type j )/2]) if b(type j ) is an even (odd) number (see Lines 
1–4 in PseudoTypeVerifyInsertion), and it would insert a pseudo type type j into L if the type is not 

provided by L and its bit width is larger than the minimum bit width (denoted by bmin) of flip-flops in 

L (see Lines 5–8 in PseudoTypeVerifyInsertion). The same procedure repeats in the new created type. 
Note that this method works only when the 1-bit type exists in L. We still have to insert pseudo flip-

flops by the function InsertPseudoType in Algorithm 1 if the 1-bit flip-flop is not provided by L. For 

example, assume a library L only provides two kinds of flip-flops whose bit widths are 1 and 7. In the 
new procedure, it first adds two pseudo types of flip-flops whose bit widths are 3 and 4, respectively, 

for the flip-flop with 7-bit (i.e., L becomes [1 3 4 7]). Next, the flip-flop whose bit width is 2 is added 

to L for the flipflop with 4-bit (i.e., L becomes [1 2 3 4 7]). For the flip-flop with 3-bit, the procedure 

stops because flop-flops with 1 and 2 bits already exist in L. In the new procedure, we do not need to 
insert 5- and 6-bit pseudo types to L.  

3.3. Merge Flip-Flops 

We have shown how to build a combination table in Section III-B. Now, we would like to show how 
to use the combination table to combine flip-flops in this subsection. To reduce the complexity, we 

first divide the whole placement region into several sub regions, and use the combination table to 

replace flip-flops in each sub region. Then, several sub regions are combined into a larger sub region 

and the flip-flops are replaced again so that those flip-flops in the neighboring sub regions can be 
replaced further. Finally, those flip-flops with pseudo types are deleted in the last stage because they 

are not provided by the supported library. Fig. 10 shows this flow. 

Region Partition (Optional): To speed up our problem, we divide the whole chip into several 
subregions. By suitable 
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Fig11. Example of region partition with six bins in one subregion. 

 

Partition, the computation complexity of merging flip-flops can be reduced significantly (the related 

quantitative analysis will be shown in Section V). As shown in Fig. 11, we divide the region into 

several subregions, and each subregion contains six bins, where a bin is the smallest unit of a 
subregion.  

Replacement of Flip-flops in Each Subregion:Before illustrating our procedure to merge flip-flops, we 

first give an equation to measure the quality if two flip-flops are going to be replaced by a new flip-
flop as follows: 

cost = routing_length – α × √available_ area 

Where routing_length denotes the total routing length between the new flip-flop and the pins 

connected to it, and available_ area represents the available area in the feasible region for placing the 
new flip-flop. α is a weighting factor (the related analysis of the value α will be shown in Section V). 

The cost function includes the term routing_length to favor a replacement that induces shorter 

wirelength. Besides, if the region has larger available space to place a new flip-flop, it implies that it 
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has higher opportunities to combine with other flip-flops in the future and more power reduction. 

Thus, we will give it a smaller cost. Once the flip-flops cannot be merged to a higher-bit type (as the 
4-bit combination n4 in Fig. 9), we ignore the available_area in the cost function, and hence α is set to 

0. After a combination has been built, we will do the replacements of flip-flops according to the 

combination table. First, we link flip-flops below the combinations corresponding to their types in the 
library. Then, for each combination  n in T, we serially merge the flip-flops linked below the left child 

and the right child of n from leaves to root. Algorithm 3 shows the procedure to get a new flip-flop 

corresponding to the combination n. Based on its binary tree, we can find the combinations associated 
with the left child and right child of the root. Hence, the flip-flops in the lists, named lleft and lright, 

linked below the combinations of its left child and its right child are checked (see Lines 2 and 3). 

Then, for each flip-flop fi in lleft , the best flip-flop fbest in lright, which is the flip-flop that can be 

merged with fi with the smallest cost recorded in cbest, is picked. For each pair of flip-flops in the 
respective list, the combination cost [based on (5)] is computed if they can be merged and the pair 

with the smallest cost is chosen (see Lines 4–11). Finally, we add a new flip-flop f
 
ꞌ in the list of the 

combination n and remove the picked flip-flops which constitutes the f ꞌ (see Lines 12–14). For 
example, given a library containing three types of flipflops (1-, 2-, and 4-bit), we first build a 

combination table T as shown in Fig. 12(a). In the beginning, the flip-flops with various types are, 

respectively, linked below n1, n2, and n3 in their types in the library. Then, for each combination n in 
T, we serially merge the flip-flops linked below the left child and the right child of n from leaves to 

root. Algorithm 3 shows the procedure to get a new flip-flop corresponding to the combination n. 

Based on its binary tree, we can find the combinations associated with the left child and right child of 

the root. Hence, the flip-flops in the lists, named lleft and lright, linked below the combinations of its left 
child and its right child are checked (see Lines 2 and 3). Then, for each flip-flop f i in lleft, the best flip-

flop fbest in lright, which is the flip-flop that can be merged with fi with the smallest cost recorded in cbest 

, is picked. For each pair of flip-flops in the respective list, the combination cost [based on (5)] is 
computed if they can be merged and the pair with the smallest cost is chosen (see Lines 4–11). 
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Fig. 12. Example of replacements of flip-flops. (a) Sets of flip-flops before merging. (b) Two 1-bit 

flip-flops, f1 and f2, are replaced by the 2-bit flip-flop f3. (c) Two 1-bit flip-flops, f4 and f5, are replaced 
by the 2-bit flip-flop f6. (d) Two 2-bit flip-flops, f7 and f8, are replaced by the 4-bit flip-flop f9. (e) Two 

2-bit flip-flops, f3 and f6, are replaced by the 4-bit flip-flop f10. (f) Sets of flip-flops after merging. 

Finally, we add a new flip-flop f ꞌ in the list of the combination n and remove the picked flip-flops 
which constitutes the f ꞌ (see Lines 12–14). For example, given a library containing three types of 

flipflops (1-, 2-, and 4-bit), we first build a combination table T as shown in Fig. 12(a). In the 

beginning, the flip-flops with various types are, respectively, linked below n1, n2 , and n3 in T 

according to their types. Suppose we want to form a flipflop in n4, which needs two 1-bit flip-flops 
according to the combination table. Each pair of flip-flops in n1 are selected and checked to see if 

they can be combined (note that they also have to satisfy the timing and capacity constraints described 

in Section II). If there are several possible choices, the pair with the smallest cost value is chosen to 
break the tie. In Fig. 12(a), f1 and f2 are chosen because their combination gains the smallest cost. 

Thus, we add a new node f3 in the list below n4, and then delete f1 and f2 from their original list [see 

Fig. 12(b)]. Similarly, f4 and f5 are combined to obtain a new flip-flop f6, and the result is shown in 

Fig. 12(c). After all flip-flops in the combinations of 1-level trees (n4 and n5) are obtained as shown in 
Fig. 12(d), we start to form the flip-flops in the combinations of 2-level trees (n6, and n7). In Fig. 

12(e), there exist some flip-flops in the lists below n2 and n4, and we will merge them to get flip-flops 

in n6 and n7, respectively. Suppose there is no overlap region between the couple of flipflops in n2 and 
n4. It fails to form a 4-bit flip-flop in n6. Since the 2-bit flip-flops f3 and f6 are mergeable, we can 

combine them to obtain a 4-bit flip-flop f10 in n7. Finally, because there exists no couple of flip-flops 

that can be combined further, the procedure finishes as shown in Fig. 12(f). If the available overlap 
region of two flip-flops exists, we can assign a new one to replace those flip-flops.  be placed in the 

grid that makes the wirelength between the flip-flop and its connected pins smallest. If the capacity 

constraint of the bin,Bk, which the grid belongs to will be violated after the new flip-flop is placed 

on that grid, we will search the bins near Bk to find a new available grid for the new flip-flop. If none 
of bins which are overlapped with the available region of new flip-flop can satisfy the capacity 

constraint after the placement of new flip-flop, the program will stop the replacement of the two flip-

flops. 

 

Fig13. Combination of flip-flops near subregion boundaries (a) Result of replace flip-flops in each subregion. 

(b) Result of replace flip-flops in each new subregion which is ob tained from combining twelve subregion in 

(a). 
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Fig14. Combination of subregions to a larger one (a) Placement is originally partitioned into 16 subregions for 

replacement. (b) Subregion bounded by bold line is obtained from combining four neighboring subregions in (a) 

(c) Subregion bounded by bold line is obtained from combining four subregions in (b). 

Bottom-Up Flow of Subregion Combinations (Optional): As shown in Fig. 13(a), there may exist 
some flip-flops in the boundary of each subregion that cannot be replaced by any flip-flop in its 

subregion. However, these flip-flops may be merged with other flip-flops in neighboring subregions 

as shown in Fig. 13(b). Hence, to reduce power consumption further more, we can combine several 
subregions to obtain a larger subregion and perform the replacement again in the new subregion 

again. The procedure repeats until we cannot achieve any replacement in the new subregion. Fig. 14 

gives an example for this hierarchical flow. As shown in Fig. 14(a), suppose we divide a chip into 16 

subregions in the beginning. After the replacement of flip-flops is finished in each subregion, four 
subregions are combined to get a larger one as shown in Fig. 14(b). Suppose some flip-flops in new 

subregions still can be replaced by new flip-flops in other new subregions, we would combine four 

subregions in Fig. 14(b) to get a larger one as shown in Fig. 14(c) and perform the replacement in the 
new subregion again. As the procedure 

repeats in a higher level, the number of mergeable flip-flops gets fewer. However, it would spend 

much time to get little improvement for power saving. To consider this issue, there exists a trade-off 
between power saving and time consuming in our program. 

De-Replace and Replace (Optional): Since the pseudo type is an intermediate type, which is used to 

enumerate all possible combinations in the combination table T, we have to remove the flip-flops 

belonging to pseudo types. Thus, after the above procedures have been applied, we would perform de-
replacement and replacement functions if there exists any flop-flops belonging to a pseudo type. For 

example, if there still exists a flip-flop, fi , belonging to n3 after replacements in Fig. 9(f), we have to 

de-replace fi into two flip-flops originally belongs to n1. After de-replacing, we will do the 
replacements of flip-flops according to T without consideration of the combinations whose 

corresponding type is pseudo in L.  

4. COMPUTATION COMPLEXITY 

This section analyzes the timing complexity of this algorithm. The core is to continuously seek 

suitable combinations, and find the optimized solution among all possibilities. Hence, the timing 

complexity depends on the operation count of the function of deciding whether two flip-flops can 
combine together or not. For example, assume all flip-flops are of the same type, 1-bit flip-flop. In the 

beginning, each flip-flop will try to combine with all the other flip-flops.  

 
Fig15(a) Influence of the region size on power. 
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If the first flipflop finds the best solution, the two 1-bit flip-flops will form a  2-bit flip-flop and be 

removed from the list. Then, the second flip-flop will perform identical procedures. Let N represent 
the number of flip-flops per circuit. For an exhaustive run for all the 1-bit cells, the timing complexity 

is O(N
2
). If the largest flip-flop the library provided is M-bit, the size of the combination table is 

O(Mlog 2(M)) when we use pseudo type flip-flops. The total timing complexity is O(Mlog2(M)× N
2
), 

equivalently equal to O(N
2
) because the value of M is much less than the value of N. 

 

Fig16(a) Influence of the weighting factor on power reduction.  (b) Influence of the region size on execution 

time. (b) Influence of the weighting factor on wire length reduction. 

5. EXPERIMENTAL RESULTS 

 

Fig17. Average computational complexity of our algorithm 
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6. CONCLUSION AND FUTURE WORK 

This paper has proposed an algorithm for flip-flop replacement or power reduction in digital 

integrated circuit design. The procedure of flip-flop replacements is depending on the combination 

table, which records the relationships among the flip-flop types. The concept of pseudo type is 

introduced to help to enumerate all possible combinations in the combination table. By the guidelines 
of replacements from the combination table, the impossible combinations of flip-flops will not be 

considered that decreases execution time. Besides power reduction, the objective of minimizing the 

total wirelength also be considered to the cost function. The experimental results show that our 
algorithm can achieve a balance between power reduction and wirelength reduction. Moreover, even 

for the largest case which contains about 1 700 000 flip-flops, our algorithm can maintain the 

performance of power and wirelength reduction in the reasonable processing time. 
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