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Abstract: In this paper, free vibration analyses of isotropic and composite rectangular plates with different 
thickness ratios, aspect ratios, boundary conditions, and stacking sequences as applicable have been 
investigated using a new triangular shear flexible finite element. First-order shear deformation theory (FOSDT) 
is used to include the effect of transverse shear deformation. The element has six nodes on the sides and forty 
five degrees of freedom .The geometry of the element is expressed by shape function in terms of area 
coordinates. The finite element formulation is displacement-based. Numerical examples are presented to show 
the accuracy and elegancy of the proposed element. The non-dimensional frequency parameters of isotropic and 
composite plates under different thickness ratios, aspect ratios etc., are presented in tabular form along with the 
available published results. 
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1. INTRODUCTION 
Free vibration analysis of plate is very important in the field of structural engineering because of its 
wide application in practical life. The finite element method1 is regarded as one of the most versatile 
analysis tools specifically in structural mechanics problems. The analysis of plates and shells are the 
first problems where the finite element method was first applied. Kirchoff’s hypothesis was utilized 
where a number of problems were faced. The major problem concerned the satisfaction of normal 
slope continuity at the element edges which could not be solved satisfactorily. In the subsequent 
study, the above problem has been avoided by adopting Mindlin’s hypothesis where the effect of 
shear deformation has been considered. 

Many exact solutions for elastic thin isotropic plate for bending have been well documented in 
Timoshenko’s monographs2,3. However, the analytical solution of plates with higher thickness ratio is 
not sufficient in literatures. Analysis of rectangular and triangular plates with different thickness ratios 
is quite vast. But there are limited numbers of literatures on triangular plates particularly for higher 
thickness ratios. Some papers have been discussed below which related to present work. 

Zienkiewiczet al.4have proposed a discrete shear triangular element which is formulated based on 
Discrete Kirchhoff Theory. Chen et al.5 proposed two refined triangular thin/thick plate elements, the 
conforming displacement element DKTM with one point quadrature for the part of shear strain and 
the element RDKTM with the re-constitution of the shear strain, based on the Mindlin/Reissner plate 
theory. In the formulations the exact displacement function of the Timoshenko's beam is used to 
derive the element displacements of the refined elements.Thankamet al.6 described the buckling 
behavior of rectangular laminate plates subject to thermal loads. The element is based on the 
transverse displacement field.Gauss Quadrature formula is used to compute element matrices. 
Shufrinet al.7 have been investigated the free vibration of rectangular thick plates with variable 
thickness and different boundary conditions by using the extended Kantorovich method. Two shear 
deformation theories which included the effect of both transverse shear stresses and rotary inertia have 
been applied to the analysis. Sang Wook Kang et al.8 proposed a practical analytical method for the 
free vibration analysis of a simply supported rectangular plate with unidirectional arbitrary thickness 
variation. Huang et al.9 presented a method which is developed for analyzing the free vibration 
problem of orthotropic rectangular plates with variable thickness.  
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Cai et al.10proposed a new three node triangular plate element, labeled as DST-S6 (Discrete Shear 
Triangular element with 6 extra Shear degrees of freedom), for the analyses of plate/shell structures 
comprising of thin or thick members. The formulation is based on the DKT (Discrete Kirchhoff 
Technique) and an appropriate use of the independent shear DOF. 

Liewet. Al.11 presented the comprehensive sets of accurate vibration frequencies for thick rectangular 
plates subjected to 21 boundary conditions involving all possible combination of clamped, simply 
supported and free edges. In this study, sets of mathematically complete two-dimensional polynomials 
are assumed in the displacement and rotational functions to approximate mode shapes. The energy 
function has been derived using the Rayleigh-Ritz procedure which leads to the governing eigen value 
equations. Sets of reasonably accurate vibration frequencies are presented for a wide range of aspect 
ratios a/b and relative thickness t/b for each boundary condition. 

Liew12 presented an analysis of free flexural vibration of thick symmetric rectangular laminates in 
which the Ritz method with a set of admissible beam characteristic orthogonal polynomials is used. A 
simple first order Reissner/Mindlin shear deformation theory was employed to account for the 
transverse shear effects. 

Choo et al.13developed two plate bending element, one with 9 DOF triangular and other one with 12 
DOF quadrilateral based on the hybrid-Trefftz method. Among the two independent displacement 
fields, i.e. the internal and the boundary displacements, they used the Mindlin–Reissner’s thick plate 
solution with a particular solution under pressure load as the internal displacement field. Boundary 
displacement fields are approximated as transverse displacement and rotations  and  by cubic 
and quadratic hierarchical shape functions, respectively. Transverse shear strains are derived from 
constitutive equations and equilibrium equations, respectively, and additional degrees of freedom of 
hierarchical shape functions are removed using the relations between these two shear strains. 

Brasile14presented a new assumed stress triangular element for Reissner–Mindlin plates, called TIP3, 
with three nodes and three degrees of freedom per node. The kinematics is constructed by means of 
the so-called linked interpolation ruled by technically significant degrees of freedom (i.e. one 
transversal displacement and two rotations per node) without using additional bubble modes. The 
static representation starts from a moment–shear uncoupled polynomial approximation and is 
constrained to satisfy some equilibrium conditions in order to reduce the stress parameters to a 
minimum number. 

Zhuang et al.15 have developed a new locking-free triangular thick plate element with 9 standard 
kinematic degrees of freedom and 6 additional degrees of freedom for shear strains for analyzing 
plate/shell structures of thin or thick members. 

In the present work, free vibration of isotropic and composite rectangular plates with different 
thickness ratios, aspect ratios, boundary conditions, and stacking sequences has been analyzed using a 
new triangular plate element. To include the effect of transverse shear deformation, first-order shear 
deformation theory (FOSDT) is used. The element has six nodes on the sides and forty five degrees of 
freedom. Numerical examples are solved to show the accuracy and elegancy of the proposed element. 
The non-dimensional frequency parameters of isotropic and composite plates under different 
thickness ratios, aspect ratios etc., are presented in tabular form along with the available published 
results. 

2. FINITE ELEMENT FORMULATION 

 

Fig. 1. Element configuration 
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The formulation is based on the Reissner-Mindlin plate theory. In this theory it is assumed that the 
transverse deflection of the plate is small compared to the plate thickness and the normal to the plate 
mid surface which is taken as the reference plane remains straight but may not remain normal to the 
deformed mid surface. The proposed element is shown in Fig.1. 

The element has eight degrees of freedom ( ), , , , , , ,u v w x y xy x yθ θ θ γ γ

)
 at nodes 1-3 and seven 

degrees of freedom ( , , , , , ,u v w x y x yθ θ γ γ  at nodes 4-6. Nodes 1-3 are at the vertices and 4-6 at 

midpoints of the sides of the element. The natural co-ordinates of the nodes are ( )0, 0 , ( )1, 0 , 
, ,  and .  The co-ordinates of any point within the element with 

respect to the global co-ordinate system are given by  
( )0,1 ( )0.5, 0 (0.5, )0.5 ( )0, 0.5

( )1 1 2 3x x x xξ η ξ η= − − + + , ( )1 1 2y y y 3yξ η ξ η= − − + + ,
2 2 2

2

a b x c y
ξ

+ +
=

Δ
, 3 3 3

2

a b x c y
η

+ +
=

Δ               
(1) 

where 

1 2 3 3a x y x y= − 2 2 3 1 1y x y= −, a x , , 3 3 1 2 2 1a x y x y= −

1 2b y y= − 3 2 3b y y= −, , ,1 3 1 2b y y= − 1 3c x x2= − ,  

2 1c x x= − 3 3 2c x x= −, and 1 ( ) 21 2 3a a aΔ = + + . 

The field variables i.e., the independent displacement components at the reference plane may be 
expressed as follows: 

[ ]{ }1u N uα= , [ ]{ }1v N vα= , [ ]{ }2w N wα= , [ ]{ }1Nx xγ αγ= ,  

and [ ]{ }1Ny yγ αγ=
                                                                                                                                   

(2) 

where 

{ } [ ]1 2 3 4 5 6
T

uα α α α α α α= , { } , [ ]7 8 9 10 11 12
T

vα α α α α α α=

{ } [ ]. . .13 14 15 16 17 18 33
T

wα α α α α α α α= , 

{ } [ ]34 35 36 37 38 39
T

xα α α α α α αγ = , { } [ ]40 41 42 43 44 45
T

yα α α α α α αγ = , 

[ ] 2 211N ξ η ξ ξη η⎡ ⎤=⎢ ⎥⎣ ⎦
and 

2 2 3 2 2 3 412

3 2 2 3 4 5 4 3 2 2 3

4 5 .

N ξ η ξ ξη η ξ ξ η ξη η ξ

ξ η ξ η ξ η η ξ ξ η ξ η ξ η

ξ η η

⎡⎡ ⎤ =⎣ ⎦ ⎢⎣

⎤
⎥⎦

 

Using Eqs. (1) and (2), xθ , and yθ  may be written as  

{ }
[ ] [ ] { } [ ]{ }
{ } { }

1

2 32 2 12 2

,3 1

w w w
N xx xx x x

b bN N Nw x

N Nw x

ξ η
θ γ αγξ η

α αγξ η

α αγ

∂ ∂ ∂ ∂ ∂
⎡ ⎤= + = + + ⎣ ⎦∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂
= + +⎜ ⎟Δ ∂ Δ ∂⎝ ⎠

⎡ ⎤ ⎡ ⎤= + + ⎣ ⎦⎣ ⎦                                                                                              

(3) 
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{ }
[ ] [ ] { } [ ]{ }
{ } { }

1

2 32 2 12 2

,4 1

w w w
N yy yy y y

c cN N Nw y

N Nw y

ξ η
θ γ αγξ η

α αγξ η

α αγ

∂ ∂ ∂ ∂ ∂
⎡ ⎤= + = + + ⎣ ⎦∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂
= + +⎜ ⎟Δ ∂ Δ ∂⎝ ⎠

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦                                                                                              

(4) 

Again, using Eqs. (3) and(4), xyθ  may be expressed as  

[ ] [ ] [ ] { }

[ ] [ ] { } [ ] [ ] { }
{ }

2 2 2
2 2 3 2 2 3 3 3

2 2 22 2 2 2 22 2 2

2 3 2 3
1 1 1 12 2 2 2

5 6

y y yx x x
xy x y x x y y

b c b c b c b c
N N N w

c c b b
N N N Nx y

N Nw

θ θ θθ ξ η θ ξ θ η
θ

ξ η ξ η

α
ξ ηξ η

α αγ γξ η ξ η

α

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ + ∂ ∂
= + +

∂ ∂Δ ∂ Δ Δ ∂

∂ ∂ ∂ ∂
+ + + +

Δ ∂ Δ ∂ Δ ∂ Δ ∂

= +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜
⎝

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡⎣ ⎦ ⎣ { } { } , (7Nx yα αγ γ+⎤ ⎡ ⎤⎦ ⎣ ⎦

⎟
⎠

5)

where                                                           (5) 

[ ] [ ] [ ]2 33 2 2N
2 2
b bN N

ξ η
∂ ∂

= +
Δ ∂ Δ ∂

, [ ] [ ] [ ]2 34 22 2
c cN N

ξ η
∂ ∂

= +
Δ ∂ Δ ∂ 2N , 

[ ] [ ] [ ] [ ]
2 2

2 2 3 2 2 3 3 35 2 22 2 2 2 22 2 2

b c b c b c b c 2
2N N N

ξ ηξ η

∂ + ∂ ∂
= + +

∂ ∂Δ ∂ Δ Δ ∂
N , 

[ ] [ ] [ ]2 36 1 12 2
c cN N

ξ η
∂ ∂

= +
Δ ∂ Δ ∂

N and [ ] [ ] [ ]2 37 12 2
b bN N

ξ η
∂ ∂

= +
Δ ∂ Δ ∂ 1N

w

. 

Eqs. (2) – (5) may be assembled in matrix form as 

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ]

1 0 00 0 0
0 1 00 0 0
0 0 2 0 0
0 0 3 1 0
0 0 4 0 1
0 0 5 6 7
0 0 00 1 0
0 0 00 0 1

u N N N N N
v N N N N N u uw N N N N N v v
x N N N N N w NAy N N N N N

x xN N N N Nxy
y yN N N N Nx

N N N N Ny

α α
α α

θ
α

θ
α αγ γ

θ
α αγ γ

γ
γ

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎧ ⎫⎪ ⎪ ⎢ ⎥⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

α=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

for nodes 1 – 3                                              (6) 

and 

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ]

1 0 00 0 0
0 1 00 0 0
0 0 2 0 0
0 0 3 1 0
0 0 4 0 1
0 0 00 1 0
0 0 00 0 1

u N N N N N
v u uN N N N N
w v vN N N N N

wN N N N N Nx B
N N N N Ny

w

x x
N N N N Nx y y
N N N N Ny

α α
α α
αθ
α αθ

α

γ γ
α αγ γ γ

γ

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎣ ⎦⎩ ⎭

⎪= ⎬ for nodes 4 – 6                                                (7)

  

where 

[ ]NA and [ ]NB  are matrices of order  and , respectively and 8x45 7x45 [ ]0N and [ ]00N  are null matrices 
of order 1x  and 1x , respectively. 6 21

Substituting Eqs. (6) at nodes 1 – 3 and (7) at nodes 4 – 6 the coefficients ( ), 1,.....,45iiα =  in the 
displacement functions (2) can be expressed in terms of nodal unknowns as 

{ } [ ]{ }Aδ α= or { } [ ] { }1Aα δ−= ,                                                                                                                   (8) 
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where 

[ ] [ ] [ ] [ ] [ ] [ ] [ ](1) (2) (3) (4) (5) (6) ,TA N N N N N NA A A B B B= ⎡
⎢⎣

⎤
⎥⎦

{ } {
}
....1 1 1 1 1 1 1 1

............. ,4 4 4 4 4 4 4

T
u v w x y xy x y

u v w x y x y

δ θ θ θ γ

θ θ γ γ

= γ
  

{ } { }.... ,5 71 2 3 4 6 8 45
T

α α α α α α α α α α=  

and the matrix [ ]A  having an order of  can be formed with 45x45 ( ) ( )i,x yi i  and ,iξ η  of six nodes. 

According to first order shear deformation theory (FOSDT), the displacement components of a point 
at a distance of  from the reference plane may be expressed in terms of field variables z

( , , , , )x yu v w γ γ  at the reference plane as 

( ) ( ) ( , ), , , ,w x yu x y z u x y z xx
γ∂⎛ ⎞= − +⎜ ⎟∂⎝ ⎠

 

( ) ( ) ( , ), , , w x yv x y z v x y z yy
γ⎛ ⎞∂

= − +⎜ ⎟∂⎝ ⎠
 

and ( ) ( ), , ,w x y z w x y= . 

The generalized stress-strain relationship may be expressed as 

{ } [ ]{ }Dσ ε= .                                                                                                                                      (9) 

In the above equation the generalized stress vector is 

{ } { }T N N N M M M Q Qx y xy x y xy x yσ = .                                                                                 (10) 

The generalized strain vector  in terms of displacement fields is { }ε

{ } { }
,

T
x y xy x y xy xz yz

u v u v yx xy x yx y y x x y

ε ε ε ε κ κ κ ε ε

θθ θ γ γ

=

∂⎧ ⎫⎪ ⎪∂ ∂ ∂ ∂ ∂
= + − − − −⎨ ⎬

∂ ∂ ∂ ∂ ∂ ∂⎪⎩
−

⎪⎭                                                                       (11)

 

and the rigidity matrix [ ]D  is given by 

[ ]

0 011 12 16 11 12 16
0 022 26 22 26
0 0. .66 66
0 011 12 16
0 022 26
0 0. 66

44 45.
. 55

A A A B B B
A A B B

sym A sym B

D D D
D D D

sym D

A A
sym

sym A

=

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥

⎡ ⎤⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎢ ⎥
⎢ ⎥⎢ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

⎥
⎥

,                                                                                   (12) 

The rigidity matrix of a laminate [ ]D  is constituted with the contributions of its individual laminae 

and the material properties ( and the fiber orientation of each lamina. ), ,2 12ν , , ,1 12 13 23E E G G G

Now, substituting Eqs. (2), (3) and (4) in Eq. (10) the strain-displacement relationship may be 
expressed as 

{ } { }Bε α⎡ ⎤=⎣ ⎦                                                                                                                                     (13) 

where B⎡ ⎤⎣ ⎦  is a ( )8x45  matrix and is given by 
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[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

7 0 00 0 0
0 6 00 0 0
6 7 00 0 0
0 0 8 7 0
0 0 9 0 6
0 0 5 6 7
0 0 00 1 0
0 0 00 0 1

N N N N N
N N N N N
N N N N N
N N N N N

B
N N N N N
N N N N N
N N N N N
N N N N N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢⎡ ⎤=⎣ ⎦ ⎢ − −⎢ ⎥
− − −⎢ ⎥

⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

⎥
⎥                                                                                                (14) 

where 

[ ] [ ]8 3N N
x
∂

=
∂

and [ ] [ ]9 4N N
y
∂

=
∂

. 

Finally, the strain vector { }ε  can be expressed as 

{ } [ ] { }1B Aε δ−⎡ ⎤=⎣ ⎦ or { } [ ]{ }Bε δ=                                                                                                               (15) 

Once the strain displacement matrix [ ]B  and the rigidity matrix [ ]D  are obtained the stiffness matrix 
can be obtained following the virtual work technique and it may be expressed as 

[ ] [ ] [ ][ ]d de TK B D B x y=∫                                                                                                                            (16) 

In a similar manner, the consistent mass matrix for an element can be expressed as 

[ ] [ ] [ ] [ ][ ][ ] 1d d1 1
e T TM A C C A xρ−=∫ y−

=

,                                                                                                       (17) 

and the equation of motion of an element may be expressed as 

[ ] [ ]2 0e eK Mω− .                                                                                                                                   (18)  

where [ ]

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

1 0 00 0 0
0 1 00 0 0

1 0 0 2 0 0
0 0 3 1 0
0 0 4 0 1

N N N N N
N N N N N

C N N N N N
N N N N N
N N N N N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and [ ]

0 0 0 0
0 0 0 0
0 0 0 0

3
0 0 0 0

12
3

0 0 0 0
12

h
h

h

h

h

ρ
ρ

ρ
ρ ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

In the above equation matrices [ ]1C  and [ ]ρ  are of order and , respectively and 5x45 5x5 ρ and  are 
the density of the plate/laminate material and thickness of the plate/laminate, respectively. Finally, the 
element stiffness and mass matrices are assembled together to form the overall stiffness matrix 

h

[ ]K  
and mass matrix [ ]M , respectively. 

Integration in the above equations (16) and (17) is carried out using Gauss quadrature method. 

3. RESULTS AND DISCUSSIONS 
Isotropic uniform thickness rectangular plates having different thickness ratios, aspect ratios and 
different boundary conditions have been considered. The required Fortran program is developed based 
on the formulation discussed in the previous section for free vibration analysis of isotropic plates as 
well as composite plates. Analyses have been performed both on free vibration of isotropic and 
laminated rectangular plates having different thickness ratios, aspect ratios, boundary conditions, fiber 
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orientation angles and number of layers as applicable. The results of the analyses have been compared 
with the available published results. 

The boundary conditions used in the study are: 

a. Boundary line parallel to x-axis: 

• Simply supported condition: 0u w x xy xθ θ γ= = = = =  

• Clamped condition: 0u v w x y xy x yθ θ θ γ γ= = = = = = = =  

• Symmetric condition: 0v y xy yθ θ γ= = = = . 

b. Boundary line parallel to y-axis: 

• Simply supported condition: 0v w y xy yθ θ γ= = = = =  

• Clamped condition: 0u v w x y xy x yθ θ θ γ γ= = = = = = = =  

• Symmetric condition: 0u x xy xθ θ γ= = = = . 

3.1 Isotropic Rectangular Plates 

The Poisson’s ratio ( )ν  and the shear correction factor ( )κ  of the plate material are taken as 0.3 and 
5/6 respectively, unless specified. The eigenvalue tests of the stiffness matrix of a single element 
having different configurations have been performed and it has been found that the element is free 
from any spurious modes. Next, the free vibration analysis of rectangular isotropic plates having 
different boundary conditions is performed. The boundary condition is designated as SCFC if the 
boundary line parallel to y-axis and x=0 is simply supported, the boundary line parallel to y-axis and 
x=a is clamped, the boundary line parallel to x-axis and y=0 is free and the boundary line parallel to x-
axis and y=b is clamped, respectively. Mesh division is designated as ( )xm n  if the plate is divided 
into m equal divisions along the x-direction and n equal divisions along the y-direction as shown in 
Fig. 2. 

An isotropic rectangular plate is first studied to validate the programme for different mesh divisions, 
boundary conditions and thickness ratios ( )/ 0.001and 0.2t b= ( / 1.0a b = and 2.0)and aspect ratios . The 
mesh arrangement used is shown in Fig. 2 which is also used in the subsequent problems. The plate is 
analyzed for different boundary conditions i.e., CFFF,CSCS and CSFF.  Thefirstfournon-dimensional 
frequency parameters 

( )2 2 / /b h Dλ ω π ρ=
Table 1. Frequency parameters for isotropic rectangular plates with different boundary 
conditions 

a/b h/b Source Frequency modes 

CFFF CSCS CSFF 

1 2 3 4 1 2 3 4 1 2 3 4 

 

 

 

 

 

1.0 

 

 

0.001 

PS-8 0.346 0.847 2.127 2.706 2.690 5.991 6.065 9.210 1.515 2.048 3.948 4.918 

PS-12 0.346 0.848 2.131 2.709 2.691 5.999 6.074 9.222 1.517 2.052 3.954 4.931 

PS-16 0.346 0.849 2.132 2.710 2.692 6.001 6.076 9.225 1.518 2.054 3.956 4.936 

PS-20 0.346 0.849 2.133 2.711 2.692 6.002 6.077 9.227 1.518 2.055 3.957 4.938 

Liew 
et al. 
[11] 

0.354 0.863 2.157 2.756 2.741 6.133 6.159 9.406 1.540 2.086 4.026 5.011 

 

 

0.2 

PS-8 0.334 0.736 1.762 2.242 2.170 4.192 4.254 5.859 1.307 1.680 3.012 3.581 

PS-12 0.333 0.736 1.763 2.243 2.171 4.196 4.258 5.865 1.308 1.681 3.013 3.587 

PS-16 0.333 0.736 1.764 2.244 2.172 4.197 4.260 5.867 1.309 1.682 3.013 3.589 

PS-20 0.333 0.736 1.764 2.244 2.172 4.198 4.261 5.868 1.309 1.682 3.014 3.590 

Liew 
et al. 
[11] 

0.338 0.744 1.780 2.276 2.202 4.259 4.297 5.934 1.325 1.701 3.052 3.626 



Mihir Chandra Manna 
 

International Journal of Emerging Engineering Research and Technology                                                  96 

 

 

 

 

 

 

 

2.0 

 

 

0.001 

PS-8 0.086 0.371 0.541 1.209 1.758 2.504 3.784 5.143 0.380 0.786 1.235 1.828 

PS-12 0.087 0.372 0.541 1.210 1.762 2.509 3.793 5.169 0.380 0.786 1.236 1.830 

PS-16 0.087 0.372 0.541 1.211 1.763 2.511 3.797 5.179 0.380 0.787 1.237 1.831 

PS-20 0.087 0.372 0.541 1.211 1.764 2.512 3.799 5.184 0.380 0.787 1.237 1.832 

Liew 
et al. 
[11] 

0.096 0.377 0.544 1.221 1.800 2.553 3.847 5.303 0.383 0.793 1.243 1.845 

 

 

0.2 

PS-8 0.085 0.334 0.510 1.053 2.690 5.991 6.065 9.210 0.363 0.697 1.107 1.551 

PS-12 0.085 0.334 0.510 1.053 2.691 5.999 6.074 9.222 0.363 0.697 1.106 1.552 

PS-16 0.085 0.334 0.510 1.053 2.692 6.001 6.076 9.225 0.363 0.697 1.106 1.552 

PS-20 0.085 0.334 0.511 1.053 2.692 6.002 6.077 9.227 0.363 0.697 1.105 1.552 

Liew 
et al. 
[11] 

0.085 0.336 0.512 1.059 2.741 6.133 6.159 9.406 0.364 0.701 1.115 1.560 

)( 2 2/ / b t Dλ ω π ρ=
obtained by the present model are presented in Table 1 with the results by Liew et 

al.11.  Liewet al.11 has used mathematically complete two-dimensional polynomials in the 
displacement and rotation functions to approximate the appropriate mode shapes with the Rayleigh-
Ritz procedure. The consistent mass matrix is used for the present analysis.  Table shows a close 
agreement between the results. 

 
Fig.  2. Isotropic plate having mesh division of  m n× . 

3.2 Composite Rectangular Plates 

The problem of free vibration analysis of composite rectangular plates having different lamina layers 
is considered. The laminate consists of layers of equal thickness. The plate is analyzed by using four 
different mess sizes i.e. , ,  and 8 8× 12 12× 16 16× 20 20× . The rectangular plate is analyzed numerically 
with different boundary conditions, namely SSSS, CCCC and CSFF. with different thickness ratios 
( 0.001 and 0.2t b= )

0

and aspect ratios . A shear correction factor   is used for all 
the numerical computations. The material properties of each lamina are taken as 

( / 1.0a b= and 2.0) 2 /12k π=

/ 41 2E E = , 
, , 0.523 2G E= 0.12 31G G= = 6 2E 0.12 25ν = , and 0.00621 25ν = . From the eigenvalue tests of the stiffness 

matrix of a single element it has also been found that the element does not possess any spurious mode. 
The first four non-dimensional frequency parameters ( )2 2/ / 0b t Dλ ω π ρ=  obtained by the present 

analysis are presented in Table 2 with the results by Liew12where . Liew12 
performed the analysis of free flexural vibration of thick symmetric rectangular laminates using the 
Ritz method with a set of admissible beam characteristic orthogonal polynomials. Three-ply, five-ply 
and eight-ply symmetric laminates are studied to investigate the effects of different parameters as 
mentioned above.Three ply laminated plates having stacking sequence 

3 /12(12h= )210 12D E ν ν−

( )0,00 00 ,90  are used for the all 

the numerical computations. The first four non-dimensional frequency parameters are shown in Table 
2.Table shows that the present results are very close to the results obtained by Liew12. 
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Table 2. Frequency parameters ( )2 2/ / 0b h Dλ ω π ρ= 0 ,90 ,0 for three-ply laminated plates ( with different 

boundary conditions 
)0 0 0

a/
b 

h/b Source Frequency modes 

SSSS CCCC CFFF 

1 2 3 4 1 2 3 4 1 2 3 4 

 

 

 

 

 

1.
0 

 

 

0.00
1 

PS-8 6.47
5 

9.28
3 

16.02
7 

25.75
1 

14.27
8 

17.20
7 

24.09
3 

35.07
2 

2.15
2 

2.41
1 

4.69
3 

10.48
3 

PS-12 6.48
2 

9.29
8 

16.05
4 

25.86
4 

14.33
3 

17.28
1 

24.19
0 

35.20
4 

2.15
8 

2.42
6 

4.70
7 

10.49
6 

PS-16 6.48
5 

9.30
3 

16.06
3 

25.90
2 

14.35
1 

17.30
6 

24.22
4 

35.25
0 

2.16
1 

2.43
3 

4.71
3 

10.50
1 

PS-20 6.48
6 

9.30
5 

16.06
8 

25.91
9 

14.36
0 

17.31
8 

24.24
0 

35.27
1 

2.16
2 

2.43
7 

4.71
7 

10.50
4 

Liew[12
] 

6.62
5 

9.44
7 

16.20
5 

25.11
5 

14.66
6 

17.61
4 

24.51
1 

35.53
2 

2.21
2 

2.48
9 

4.75
3 

10.53
7 

 

 

0.2 

PS-8 3.57
4 

5.75
6 

7.407 8.697 4.456 6.659 7.718 9.208 1.41
7 

1.51
9 

3.45
8 

4.652 

PS-12 3.57
6 

5.76
0 

7.410 8.700 4.458 6.661 7.721 9.211 1.42
0 

1.52
4 

3.46
0 

4.658 

PS-16 3.57
7 

5.76
1 

7.411 8.702 4.458 6.662 7.722 9.213 1.42
1 

1.52
6 

3.46
0 

4.662 

PS-20 3.57
7 

5.76
2 

7.411 8.703 4.459 6.663 7.722 9.214 1.42
2 

1.52
7 

3.46
1 

4.663 

Liew 
[12] 

3.59
4 

5.76
9 

7.379 8.688 4.447 6.642 7.700 9.185 1.44
4 

1.54
5 

3.46
6 

4.687 

 

 

 

 

 

 

 

2.
0 

 

 

0.00
1 

PS-8 2.31
4 

6.51
2 

6.551 9.233 5.026 10.34
7 

10.40
1 

14.01
9 

0.54
6 

0.78
0 

3.41
9 

3.695 

PS-12 2.31
5 

6.51
8 

6.558 9.250 5.031 10.37
0 

10.42
6 

14.06
5 

0.54
7 

0.78
3 

3.42
4 

3.698 

PS-16 2.31
5 

6.52
0 

6.560 9.255 5.033 10.37
7 

10.43
4 

14.08
0 

0.54
6 

0.78
3 

3.42
4 

3.700 

PS-20 2.31
6 

6.52
0 

6.561 9.257 5.036 10.38
0 

10.43
7 

14.08
6 

0.54
7 

0.78
2 

3.42
5 

3.700 

Liew 
[12] 

2.36
2 

6.62
5 

6.665 9.447 5.105 10.52
7 

10.58
3 

14.32
4 

0.55
3 

0.78
8 

3.46
3 

3.746 

 

 

0.2 

PS-8 1.91
1 

3.57
5 

4.821 5.482 3.031 4.239 5.766 5.906 0.47
4 

0.61
7 

1.93
4 

2.121 

PS-12 1.91
3 

3.57
8 

4.827 5.486 3.033 4.242 5.774 5.911 0.47
4 

0.61
8 

1.93
5 

2.122 

PS-16 1.91
3 

3.57
9 

4.830 5.488 3.033 4.244 5.777 5.913 0.47
4 

0.61
8 

1.93
6 

2.123 

PS-20 1.91
3 

3.58
0 

4.831 5.489 3.033 4.244 5.778 5.913 0.47
4 

0.61
8 

1.93
6 

2.123 

Liew 
[12] 

1.93
9 

3.59
4 

4.876 5.485 3.045 4.248 5.792 5.905 0.48
0 

0.62
1 

1.93
9 

2.126 

4. CONCLUSIONS 
 

A six-node triangular plate bending element with forty-five degrees of freedom has been used to 
investigate free vibration of isotropic and composite rectangular plates with different thickness ratios, 
aspect ratios, boundary conditions, and stacking sequences. Considering different mesh divisions 
(8x8, 12x12, 16x16 and 20x20) a comparative study of present results with those of earlier 
investigators shows the convergence characteristics and accuracy of the present element for thin 
(thickness ratio of 0.001) to thick (thickness ratio of 0.2) plates. It has also been found that the 
element is free of shear locking and does not exhibit any spurious modes.  
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