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Abstract: The selection of The selection of patients for cardiac transplantation (CT) is notoriously difficult 

and traditionally involves clinical assessment and an assimilation of markers of the severity of CHF such as the 
left ventricular ejection fraction (LVEF), maximum oxygen uptake (peak VO2) and more recently, composite 

scoring systems e.g. the heart failure survival score (HFSS). Brain natriuretic peptide (BNP) is well established 

as an independent predictor of prognosis in mild to moderate chronic heart failure (CHF). However, the 

prognostic ability of NT-proBNP in advanced heart failure is unknown and no studies have compared NT-

proBNP to standard clinical markers used in the selection of patients for transplantation. The purpose of this 

study was to examine the prognostic ability of NT-proBNP in advanced heart failure with the help of sojourn 

time distribution in a Markovian G-Queue by using Gamma distribution.   
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1. INTRODUCTION 

Despite recent advances in medical therapy, the mortality of advanced chronic heart failure (CHF) due 

to left ventricular systolic dysfunction (LVSD) remains high. Although donor organ availability 

restricts its use, cardiac transplantation (CT) remains an option for those patients with advanced CHF 
who do not respond to medical therapy [1].  

The aims of this study were firstly to evaluate the prognostic value of NT-proBNP in patients with 

advanced heart failure referred for consideration of cardiac transplantation, and secondly to compare 
the prognostic ability of NT-proBNP to that of the HFSS, and its individual component parameters. 

We consider a single server Markovian queue with two types of customers; positive and negative, 

where positive customers arrive in batches and arrivals of negative customers remove positive 
customers in batches. Only positive customers form a queue and negative customers just reduce the 

system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time 

distributions for a single server Markovian queue with positive customers and negative customers by 

using the first passage time arguments for Markov chains.  

The minimal non negative solution   where 

  of the  matrix equation is used to evaluate the 

prognostic value of NT-proBNP in patients with advanced heart failures. 

2. NOTATIONS 

                                 -         Cardiac Transplantation 

                                                     -         Chronic Heart Failure 

                                                   -          Left Ventricular Ejection Fraction 

                                                   -          Left Ventricular Systolic Dysfunction 

                                                     -          Brain Natriuretic Peptide 
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                                    -           N-Terminal Brain Natriuretic Peptide 

                                                      -           Laplace Stieltjes Transform 

                                                         -          Positive Customers 

                                                         -          Negative Customers 

                                                        -          Overall Survival 

                                                         -           Shape Parameter 

                                                         -           Scale Parameter 

                                                           -           Assuming Time  
 

3. G - QUEUE 

We consider a queue with two types of customers; positive and negative. Positive customers are 

ordinary ones who, upon arrival, join the queue with the intention of being served. In contrast to the 

positive customers, the arrival of negative customers removes some of the positive customers from the 

system, if any available, and then disappears; otherwise the negative customer is lost. Only positive 
customers can from a queue and negative customers just reduce system congestion. Such queues have 

been called G-queue [5]. 

Since [3] introduced the notion of negative customers to represent the inhibitator signal in neural 
networks and commands to delete some transactions in distributed computer systems or databases, 

there has been a growing interest not only in networks of queues [3] [5] & [7] but also in single node 

queues with negative customers [6] & [8]. Interest in time delays in the G-queue has increased 

recently. From [4] derived the LSTs of the sojourn time distributions for the M/M/1 G-queue under 
the combinations of various queueing disciplines and removal strategies.  From [5] investigated the 

end to end delay in an open tandem pair of a G-queue with FCFS discipline and RCE removal 

strategy. Most papers assume that upon arrival to a queue, a negative customer removes an ordinary 
customer from the queue. Recently, several authors have generalized this concept, allowing a negative 

arrival to remove a batch of customers [7], a random amount of workload or even all work in the 

system [8]. 

However, the results about sojourn time distribution even for single node G-queues with batch arrival 

or batch removal are few to the author’s best knowledge. In this paper, we use the first passage time 

arguments of Markov chains to derive the LST of the sojourn time distribution in single server 

Markovian G-queues with a batch arrival of positive customers and/or batch removal by a negative 
arrival. The mathematical accessibility of our model compared with that of [4] represents a part of the 

motivation for the study of batch arrivals/removals. Furthermore, our model is related to the inventory 

systems with perishable products such as fruit, vegetables and meat, in which arrival and removal 
occur in batches and instantaneous removal of inventory usually depends on the length of time that 

the products spent it the system. 

4. QUEUE LENGTH DISTRIBUTION 

In this section, we describe the mathematical model in detail and derive the queue length distribution 

in equilibrium at the arrival instants of positive customers. We consider a single server queue in which 

positive customers arrive in batches according to a Poisson process with rate , which is independent 
of the arrival process of positive customers. We assume that each arrival of a negative customer 

removes a random number  of positive customers in the system. This is, upon a negative arrival, if 

there are  positive customers in the system,  positive customers are removed and the 

negative customer disappears. The service time distribution of all customers is exponential with mean 

. For the notational simplicity, we let  and . We assume that the batch size  

of positive customers and the quota  of a negative customer take finite values to avoid calculations 

of infinite matrices. However, this assumption is not a strong restriction, since the supports of  and  

may be arbitrarily large and one can apply our model to  and  taking infinite values by truncating 

the tail pats of the state spaces with sufficiently small tail probabilities. Let  and 

 with  and  for some . 

We denote the means  and  and generating functions  and 

. 
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Note that the stationary distribution of the queue length in this system is invariant under the service 

discipline and removal strategies and concern only positive customers. This model is equivalent to the 

 queue where customers arrive in batches with batch size  according to a Poisson process 

with rate  and the customers are served in batches of maximum size  with 

, where  

                                                   

and the service time distribution is exponential with parameter . The necessary and sufficient 

condition for this system to be positive recurrent is given (e.g [9]) by 

                                                              

We assume that  throughout. 

Now we turn our attention to the queue length distribution at the epochs of positive customers, which 

will be imperative in the upcoming sections. Let  be the number of positive customers in the 

system at the epoch immediately before the arrival of the n
th
 batch of positive customers. Let  be 

the batch size of the n
th

 arrival of positive customers with the same distributions as  and , where 

 is the number of positive customers departed from the system during the  inter arrival 

period of the batch of positive customers. Then it a be seen that  

                                                     

The probability  that  positive customers potentially leave the system during the inter arrival time 

of a batch of positive customers is given by 

                                                      

Where  and  is the -fold convolution of the probability mass function 

. Simple calculations yield 

                                                        

and hence the probability generating function  is given by 

                                                               

Denoting  for  and , we deduce that the transition probability 

matrix  of  is given by 

                                                        

Following similar procedures as those in [9], the stationary distribution  of  

is given by 

                                                                                   (1) 

where  is the solution of the equation 

                                                                                             (2) 

with  being the multiplicity of , such that  and 

 are arbitrary constants, which are can be determined by the   simultaneous 

equations: 
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                                                                                                        (3) 

under the constraint  

                                                                                                                                 (4) 

and , the normalizing constant (in ) is given by  

                                             

After simple but tedious algebra, we have from (3) and (4) the following linear system of equations 

for : 

 

where  and  is the  unit 

vector and  is the  matirsx with its k
th
  row 

                      

and  row  and for  

              

4.1 Special Cases 

(i) Let  that is . In this case, (2) becomes 

                                             

and is has a unique solution , say , and the stationary distribution is given by 

                                                                                                                       (5) 

(ii) Let  that is . In this case, (2) becomes 

                                                      

and the stationary distribution is given by 

                                                                                                                         (6) 

5. THE FIRST PASSAGE TIMES 

The sojourn times, which will be treated in the upcoming sections, can be considered as the first 

passage times of the corresponding Markov chains. So we need to investigate the first passage times 
for some Markov chains related to compound Poisson processes. 

 First, we consider the compound Poisson process  

                                                                       

where  is a Poisson process with rate  and  is a sequence of independent and 

identically distributed (IID) random variables, which are independent of  and have 

probability mass function  and probability generating function 

. Let  be the first passage of time of  to the state , that is 

                                                             

and let  be the probability distribution function of . By conditioning 

the first transition of the process , we have the following proposition. 

5.1 Proposition 

The LST of  is given recursively by 

                                                    ,  
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where . The double transform  is given by 

                                                           

Now we consider the difference of two independent compound Poisson processes 

                                                 and  

where  and  are independent Poisson processes with rates  and  respectively, and 

 and  are independent sequences of IID random variables with  

and . We assume that the random variable  is bound by . Define 

a Markov chain  

                                                               

with . Let  be the state at the instant immediately after the n
th
 transition of the process 

 and  the time interval between the n
th
 and n+1

th 
transitions. Then  is a 

Markov renewal process with the transition probability matrix  of the form  

                       

where each level  is the set of m states, the state in 

level  means the state   is the upper triangular matrix 

                                                  

and 

                                      

where  

                                                                                                        (7) 

Define the first passage time as 

                                                        

and denote its distribution function . Now we derive the LST  of 

. 

5.2 Proposition 

The LSTs  for  are recursively given by  

                                                                                                                  (8) 
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and for  and  by 

                                (9) 

where  is an  matrix, which is the minimal non negative solution of the matrix equation. 

                                                                                                 (10) 

While  denotes the  entry of the matrix . 

 Let  be the first hitting time of  from state 

, to state , with the additional 

requirement that  is the first state at level  to be visited and  is the first passage time 

from state  to state . When the process , starting at , that 

is, , hits the level – , and visits state – , then 

1= (0, 1; − , ); and if the state visited is – , ∈− , +1, …, − ,  then − + −1 is the sum 

of  and . Thus we have for        

                

                                                                                      (11) 

Let  be the distribution function of  and  

be the LST of . Let  and  denote the  matrices with  

entry  and  respectively. By the spatial homogeneity for levels of  the 

distribution of  does not depend on level  but only on  and  and hence we get  

                                                              

From the spatial homogeneity of the transition probability  for states , depends 

only on the difference of the states  and its distribution function is the same as that the 

. Note that, by the Markovian property, 0, 1; − ,  and − , , ≥1 are independent. By taking 

LST in (11), we have (8). By using the same arguments as in [10] we have that  is the minimal 
non negative solution of 

                                           

5.3 Special Cases 

1. If  and , then  and hence we have 

                                              

               where  is the   identity matrix. 

2. If , that is,  then  is obtained from (8) and (10) as  

                                                   

and  is the solution of the equation 

                                                                                              (12) 

with  where                      

3. If , that is   and , then letting  in (12) and solving 

equation (12), we have 

                                                               (13) 

6. RCE WITH FCFS DISCIPLINE 

Under the FCFS queueing discipline with RCE removal strategy, upon arrival of a negative customer, 

if the number of positive customers is fewer than , then all the positive customers are removed; 



Stochastic Model to Find the Prognostic Ability of NT Pro-BNP in Advanced Heart Failure Patients 

Using Gamma Distribution 

 

International Journal of Emerging Engineering Research and Technology                                                  46 

otherwise,  customers from the end of the queue are removed. Let  denote the time period during 

which the tagged customer spends in the system from the epoch of arrival to the epoch of its service 

completion. We assume that  is infinite if the tagged customer is removed from the system before 

its service completion. Let  and  be the numbers of customers ahead of and behind the tagged 

customer, respectively, immediately after its arrival instant, and let  be the number of customers in 

the system at the tagged customer’s arrival. Let  and  be the batch size to which the tagged 

customer belongs and the number of customers in the preceding batch. Note that the probability mass 

functions of  and  are given by 

                         and   

Thus the distribution function  in equilibrium is 

                      

                                                                         (14) 

                                 

                                  

To calculate the conditional distribution , we define the Markov 

chain  

                                                    

with , where  and  are the numbers of positive customers having arrived and 

potential removals by negative customers up to time , respectively. Then the LST  of the 

first passage time distribution function 

                                            

can be obtained from (8) by replacing  in (7) by 

 

Let  be the time needed to serve  consecutive customers. Since the service time distribution is 

exponential with parameter , the probability density function  of  is given by  

                                                                                                              (15) 

Under the FCFS service discipline with RCE removal strategy, when  for the tagged 

customer to complete its service without being removed, it must hold true that  

Hence, the conditional distribution of  given that , is represented by 

                                            (16) 

                                                                              

Letting 

                                              

                                                               

and 
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we have from (1) and (14) - (16) the following proposition. 

6.1 Proposition 

The LST  of  is given by 

                 

where 

                      

                                       

                                                                     (17) 

6.2 Special Cases 

1. If  that is , then we have from (5), (8) and (17) that  

                            

                                                                                             (18) 

                                                       

2. If  that is  then  and (17) becomes 

                            

                                                  

Where  and  

3. If  then we have from (6) and (18) that 

                             

Where                                     (19) 

7. EXAMPLE 

We prospectively studied 142 consecutive patients with advanced CHF referred for consideration of 

CT. Plasma for NT-proBNP analysis was sampled and patients followed up for a median of 374 days. 

The primary endpoint of all cause mortality was reached in 20 (14.1%) patients and the combined 
secondary endpoint of all cause mortality or urgent CTx was reached in 24 (16.9%) patients. An NT-

proBNP concentration above the median was the only independent predictor of all cause mortality 

 and the combined endpoint of all cause mortality or urgent CT 

. LVEF, VO2 and HFSS were not independently predictive of mortality or need 
for urgent cardiac transplantation in this study [2]. 

Kaplan Meier survival curves for all cause mortality for the variables most commonly associated with 

a poor outcome in advanced heart failure (LVEF, Peak VO2 and HFSS), as well as NT-proBNP. The 
only predictor of all cause mortality was an NT-proBNP above the median value (log rank statistic = 

10.99, P = 0.0009). The predictors of mortality or urgent CT were LVEF (log rank statistic = 5.92, P = 

0.015) and NT-proBNP (log rank statistic = 15.36, P = 0.0001). Figure (1) & (2) shows poorer 

outcome associated with increasing NT-proBNP concentrations represented as quartiles (log rank 
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statistic = 12.7, P = 0.005) for all cause mortality and 21.22 (P = 0.0001) for all cause mortality and 

urgent transplantation [2] & [11-14]. 

 

Figure (1). Kaplan Meier Survival Curve: NT-proBNP concentrations split into quartiles in 142 patients with 

advanced heart failure against all cause mortality transplantation.  

(log rank statistic = 12.70, P = 0.005) 

 

Figure (2). Kaplan Meier Survival Curve: NT-proBNP concentrations split into quartiles in 142 patients with 

advanced heart failure against all cause mortality and urgent transplantation.   

(log rank statistic = 21.22, P = 0.0001) 

 

 



Dr. A. Muthaiyan & R. J. Ramesh Kumar 

 

International Journal of Emerging Engineering Research and Technology                                                  49 

Violet Line: < 25
th
 Percentile 

Green Line:  25
th
 – 50

th
 Percentile 

Red Line:  50
th 

– 75
th
 Percentile 

Blue Line: > 75
th
 Percentile 

Figure (3). Kaplan Meier Survival Curve: NT-proBNP concentrations split into quartiles in 142 patients with 

advanced heart failure against all cause mortality transplantation.  

(Using Gamma Distribution) 
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Figure (4). Kaplan Meier Survival Curve: NT-proBNP concentrations split into quartiles in 142 patients with 

advanced heart failure against all cause mortality transplantation.  

(Using Gamma Distribution) 

8. CONCLUSION 

A single measurement of NT-proBNP in patients with advanced CHF, can help to identify patients at 

highest risk of death, and is a better prognostic marker than the LVEF, VO2 or HFSS. The minimal 

non negative solution of the  matrix equation in the Markovian G-Queue by using gamma 
distribution gives the same results as the medical report mentioned above. The medical reports 

{Figure (1) & (2)} are beautifully fitted with the mathematical model {Figure (3) & (4)};  the 

results coincide with the mathematical and medical report. 
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