Design and Drawing Automation Using Solid Works Application Programming Interface

Abhishek C. Lad¹, A.S.Rao²

¹Department of Mechanical Engineering, VJTI, Mumbai, India (PG Student)
²Department of Mechanical Engineering, VJTI, Mumbai, India (Asst. Professor)

Abstract: Computer Aided Design (CAD) is revolution in today’s competitive industry. In mechanical industry, design process is very time consuming because it is iterative and requires experienced peoples. Computer Aided Design tool can be used for various application in mechanical engineering resulting less time in design and better productivity and quality. There are many CAD packages available in market for design which demands modelling skills. This paper aims to developed software application for product design and its CAD model updating by automating repetitive tasks using SolidWorks application programming interface (API). A case study of Winding Machine which is a mechanical product for which a program using Visual basic language i.e. Vb.Net Application is developed. Such developed application is integrated with SolidWorks CAD package through application programming interface (API). Developed application having front end and back end, front end having GUI (Graphical User Interface) through which, input design data/parameter is taken from user. Back end having internal program according to this design of winding machine is obtained in output. Output design result is passed to SolidWorks CAD package, which updating CAD models of machine and its manufacturing drawing. In addition to this it can also generate Bill of Material (BOM), bought out part list in MS-excel format.

Because of this developed application lot of time reduced in design process, CAD modelling hence overall cost of the design is also reduced. User need not require highly CAD modelling skills and design knowledge of product.

Keywords: Computer Aided Design, Application Programming Interface, Solidworks, Microsoft visual studio, Vb.Net

1. INTRODUCTION

1.1. Design Automation

Design automation is to automate conventional manual design process by use of computer or by extracting knowledge from knowledge base. This knowledge can be standard design procedure, past experience, manuals, charts, etc.

In this design knowledge, past experience, condition is stored in computer database or programmed so that it can be reuse again whenever needed.

Fig1.1 Design Automation
In this Winding Machine design automation is done. Winding Machine is used for coil winding in power transmission industry. It having components viz. Headstock, Base frame, Tailstock, coupling, standard bought out parts like gearbox, bearing, bolts, nut etc. As soon as design process is done, its CAD models and manufacturing sheet is done in SolidWorks CAD package. Also making of BOM for standard parts and manufacturing parts with its mass, material, etc. in excel sheet also costing is done. All this activities done by manually, this thesis aims to develop a system which automates the above manual activities resulting less time in design and high efficiency.

1.2. Application Programming Interface (API)

API (Application Programming Interface) is software development technique for integrating two different software. With the help of API we can develop custom stand-alone windows executable files, for API programming we can use VB.NET, C#, Visual C++ languages.

In this paper for developing software application, Microsoft visual Basic Version 2010 is used. We integrated Microsoft visual studio express 2010 with CAD package; this resulted in exchanging data between these two software. There are many CAD software packages having Application Programming Interface functionality. In this SolidWorks CAD package is used because it is user friendly, most important it supports Application Programming Interface functionality.

Microsoft Visual Studio 2010 is integrated with SolidWorks via COM (Component Object Management). It means we connect two different software, we can exchange data between them, so by doing programming in Vb.net it will affect change in SolidWorks software.

2. PROBLEM DEFINITION

➢ As discussed above winding machine having many mechanical components. Designs of these components depend on customer requirement. These design calculations for all components are repetitive and time consuming task.

➢ Also this design process is currently done on past experience; experienced personal are needed every time for designing. This involves selection of standard parts like gearbox, motor, bearing, hardware like nut, bolt, screw etc. There is no standard design procedure adopted.

➢ After design calculation are done, it is time consuming to make CAD models of machine part and its manufacturing drawing which also requires skill.

3. OBJECTIVES OF THE WORK

➢ To develop standard method or procedure for designing a component.

➢ To develop application which can automate above design process. It means to store or formulate past design experience, knowledge, procedure in computer database, which can be used repetitively again and again.

➢ To develop methodology and to integrate above application with SolidWorks CAD package to set automatically updated versions of CAD model and manufacturing drawing.
4. PARAMETRIC MODELING AUTOMATION

There are following two approaches for modelling automation

a) Master Model

b) Generative Model

The first method, which we call the master model method, uses a worst case model and drives that model. You don’t create geometry. You don’t create assemblies or drawings. You simply open an existing model and you drive it. The other method, known as generative modeling actually generates models and assemblies and drawings on the fly. There are certainly cases where both have their distinct advantages.

With the master model approach, you start off with a “worst case” master model. We use SolidWorks to suppress or delete features that we don’t want, for example. That means that all of the features and components that you might need, have to be in the master model. Does this make the models more complex? Certainly, it does.

But the programming for master models, and this includes programming in the traditional sense, where you’re working with the SolidWorks API and when you’re writing rules inside of a DriveWorks or a TactonWorks (Commercially available solution partner product) type of product. It is a lot easier to delete a component than to describe to a computer how it is to be assembled into an assembly.

The generative approach, suffers from the complexity of using the SolidWorks API. Well you can’t easily look and make that determination programmatically.

Model testing is certainly also easier with a master model because you can test with SolidWorks clicks. With generative code, you need to run the code to test anything. But the final decision that people have to make is whether their design can effectively be represented in a “worst case” model. In most cases it can, so we’re going to focus primarily on the master model approach, however, we will address both in this project.

5. DESIGN PROCEDURE

There is no standard design procedure used, it depends on past experience and knowledge of that design engineer, in this we are going to develop standard procedure for design. So that it can be used by person not having more experience and design knowledge of machine. Design starts with customer order, in that following main parameters are given by customer. Depends on that design done, we are using standard formulae for strength calculation.

5.1. Design Parameters

- **Capacity of machine (Ton):** It is weight taken by machine with full coil winding.
- **Output torque (Kgm):** It is required output torque with that coil can easily get wound. Sometimes customer also mentioned motor capacity (HP)
- **Output Speed (RPM):** It is output speed (RPM) of faceplate. It is given in terms of maximum and minimum output speed.
- **Centre height from bed (mm):** It is height of centre from bed, depends on customer.
- **Maximum Admittance (mm):** It is maximum distance between headstock faceplate to tailstock faceplate
- **Minimum Admittance (mm):** It is minimum distance between headstock faceplate to tailstock faceplate.
5.2. Following Component is to be Design

- Motor Selection
- Gear Box Selection
- Coupling Design
- Faceplate Design
- Bearing Selection
- Base frame Design
- Selections of hardware component nuts, screws, guide ways etc.

6. ALGORITHM FOR DESIGN PROCESS AUTOMATION

7. Screenshots of Developed Application

![Graphical User Interface for General Input](image_url)

Fig7.1. Graphical User Interface for General Input
Design and Drawing Automation using Solid works Application Programming Interface

Fig 7.2. Graphical User Interface for Coupling Design

Fig 7.3. Graphical User Interface for Bearing Selection
Fig 7.4. CAD Model of Winding Machine

Fig 7.5. Manufacturing Part List in MS-Excel
Fig7.5. Bill of Material (BOM) in MS-Excel

8. RESULT AND DISCUSSION

By using above developed application, it reduces 80 present time required for overall design process hence significant amount of saving in cost.

Following table shows comparison of time line between conventional and automated method.

<table>
<thead>
<tr>
<th>Conventional Design Method</th>
<th>Automated Design Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-6 days</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

Using this application 30 minutes are required for design calculation process and generating updated versions of CAD models hence overall cost reduction is 20 to 25%.

As there is no 100 percent design and drawing automation is achieve. In this 1.30 hrs required for drawing sheets checking because design is based on customer requirement sometimes drawing views are scale down or scale up this have to do manually.
9. **Future Scope**

The work presented here is developing a design and drawing automation system for Winding Machine. Yet, the approach presented in this thesis could be further enhanced and extended by considering the following aspects:

- Presented work shows design and drawing automation of winding machine, this application can be developed with other design standards and other types of winding machine.
- Further, it can be developed for the CAE automated application to solve and simulate the components.

References

[10] GATTAMELATA, Davide; PEZZUTI, Eugenio; VALENTINI, Pier Paolo (2005), Using Application Programming Interface to Integrate Reverse Engineering Methodologies into SolidWorks, University of Rome Tor Vergata, Dept of Mechanical Engineering, Italy

[15] M. Zhen and J. Yingyi, Automatic assembly for combined mold components based on
Design and Drawing Automation using Solid works Application Programming Interface

SolidWorks, (2011), International Conference on Electronics, Communications and Control (ICECC)

[16] Y. Yang, The parametric design and intelligent assembly system based on the secondary development of SolidWorks,(2010), 2nd International Conference on Computer Engineering and Technology (ICCET)

AUTHOR’S BIOGRAPHY

Abhishek C. Lad is the Post graduate Student, Department of Mechanical Engineering, Veermata Jijabai Technological Institute, Mumbai, Maharashtra

A.S.Rao is the Assistant Professor, Department of Mechanical Engineering, Veermata Jijabai Technological Institute, Mumbai, Maharashtra