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ABSTRACT  

Recent advances in computer speed and storage have led to an increasing interest in developing new 

methodologies to satisfy a need for accurate and efficient numerical computation. The use of the Finite 

difference Method (FDM) for the numerical solution of electromagnetic scattering in unbounded regions 

requires proper absorbing boundary conditions (ABC) on the outer surface that truncates the infinite three-

dimensional space. In this work we analyze a single radiating longitudinal slot in the broad wall of a rectangular 

waveguide using FDM which had been previously studied with the Method of Moments (MoM). It leads to a 

sparse matrix however its size becomes extremely large 

 

INTRODUCTION 

Since the evolution of computers in early 60's, the numerical solution of equations that describe 

physical phenomena opened new horizons in our ability to better understand the behavior of nature. 

This ignited a tremendous effort among scientists and engineers in developing computer-aided 

methods that would predict the behavior of such physical phenomena. The new era of computer 

simulation was born. 

In the world of electromagnetic, computer simulation techniques have proven to be powerful tools in 

predicting and giving a better understanding of the behavior of electromagnetic fields and the 

performance of various devices. For scattering problems in the frequency domain, where the operating 

frequency is known, integral equation techniques, such as the Method of Moments (MoM), were the 

first to be exploited and for years they dominated the research, as well as the commercial market [1]. 

Such techniques necessitate the use of green’s functions either scalar or dyadic. More on the available 

computer programs based on integral equations and moment method solutions may be found in [2], 

chapter 12. 

The implementation of numerical techniques generally leads to a system of equations, which in matrix 

notation is: 

 

  Is a square matrix  is the known right hand side, usually called the excitation and the solution 

is the unknown column vector . 

For certain type of problems, where the spatial domain is bounded by perfectly conducting walls 

differential equation techniques, such as Finite Differences (FD) or Finite Elements (FE), are superior 

to integral equations as they are easier to formulate without boundary conditions (and slightly more 

complicated when BC’s are included). They are based on discretization of the partial differential 

equation. [A] The final matrix they produce is sparse. After a standard procedure the matrix can be 

sometimes made banded. Problems with many dielectric materials are handled without extra 

computational cost. FD are more suitable for problems with more regular geometries, while FE can 

easily handle any kind of arbitrary geometries and give better accuracy when highly complex in 

homogeneities are present. 
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Both techniques, FD and FE, have been exploited in the past also for radiation problems from wire or 

dielectric scatterers. For such open boundary problems though, where the geometric domain is not 

bounded by any surface with known absorbing boundary conditions and extends to infinity FD or FE 

suffers because artificial absorbing boundary condition (ABC) has to be used in order to truncate the 

infinite domain. 

PROBLEM DEFINITION 

This thesis deals with the implementation of the Finite Difference Method (FDM) for solving open 

boundary vector wave problems. An ABC of the first order [3] is introduced. It is based on a local 

differential operator, in other words it does destroy the sparsity and symmetry of the FD matrices to a 

large extent. This boundary condition is applied on the surface of a closed box. The mathematical box 

truncates the infinite domain of the problem to a finite one and should completely enclose the volume 

of interest. The volume of interest is defined as the three-dimensional region that contains all the 

metallic and dielectric scatterers, which may be of any shape and complexity. The FDM can be 

applied in the finite region. 

The role of this new type of boundary condition is at absorb all outgoing electro-magnetic waves 

causing almost no reflection on the surface of the box. Due to its absorbing character, the boundary 

condition is called an Absorbing Boundary Condition (ABC) and the Surface where it occurs the 

absorbing boundary surface (ABS). 

PRELIMINARY STUDIES 

Analysis of longitudinal slot in rectangular waveguide geometries and rectangular structures has made 

a significant progress; however, the development is relatively slow with other slot geometries. The 

MoM formulations are contained in [4-6]. The start of the formulation in terms of unknown magnetic 

current can be made from text book like that of Markov [7]. The finite element problem can be 

studied from ref. [3]. The equations are formed from the curl equations of Maxwell and take the 

form . Details are given in chapter 2. The boundary conditions to be satisfied are 

that the tangential components of the electric field should be forced to go to zero on the metallic 

boundaries. The conditions at the input and matched end of the waveguide are also discussed in 

chapter 2. The ABC for this particular problem (of slot) is given in chapter 3 in the component form 

making use of the Wilcox expansion [8]. The full geometry is shown in the figure 1 below. It is a 

short section of a rectangular waveguide and connected to a matched termination on pink side. At the 

metallic wave guide walls the tangential components of the electric fields will be zero. The excitation 

is from an incident  wave in the waveguide. We have already stated that all differential operators 

are discretized as finite differences. In this work try as far as possible to use central difference 

formulas to preserve the symmetry of the matrix [A] in Eq. (1.1). However, when the boundary 

conditions contain derivatives we are forced to use either forward or backward difference formulas 

which disturbs the symmetry. In the case of an ABC the sparsity is also reduced because of the 

presence of large number of terms. The non zero terms in vector [b] Eq. (1.1) is obtained from the non 

zero term in the R.H.S of the boundary condition at the input port that is depicted by orange lines in 

figure 1. It will be discussed in more detail. 

 

Figure1. Longitudinal slots in Rectangular waveguide 
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METHODOLOGY AND THESIS ORGANIZATION 

The problem is divided into two sections that is the region, inside the waveguide and the region 

bounded by the ABC and the ground plane. The two are joined by the slot opening where the 

continuity of the fields is enforced. The different part of the matrix [A] is contributed by the different 

the different regions will be discussed later. The size of the matrix [A] allows only an iterative 

solution of Eq. (1.1) and we use the method of conjugate gradient for this purpose. Chapter 4 contains 

the algorithm for forming the matrix [A] from the contributions of the section inside the waveguide 

and that bounded by ABS. The conjugate gradient algorithm for solving Eq. (1.1) along with how the 

real computation proceeds is outlined. In chapter 5, all computer programs and the results are given 

for some of the computed elements of [A] along with the other relevant quantities. 

DERIVATIONS OF THE WAVE EQUATIONS ALONG WITH BOUNDARY 

CONDITIONS 

In the free space the Maxwell’s equations are 

Since the interior of the waveguide 

and the region enclosed by the ABC and the ground plane (the radiation region proper) is free 

space, these are the appropriate starting equations. The coordinate system used is as shown in 

the fig. 1. Taking the curl of the first of the equations, we get 

 

Where . One can easily verify that divergence equation is satisfied. The 

boundary conditions are  on all the metallic surfaces and the derivative  

where n is the coordinate normal to the surface. This last condition on the normal component 

 is a consequence of at the metal surface. The conditions at the input and 

matched end of the waveguide are obtained under the assumption of presence of only the 

dominant TE10 mode at these planes which is  

approximately true if the planes are 

sufficiently far removed from the slot where all the mode have decayed. The detailed 

derivation is as follows, 

For    

Incident field      

Reflected wave      

Addition of the above two equations (2.2) and (2.3). The total field is at z=-4L is 

 

Differentiating this we obtain 

 

Substracting equations (2.5) from (2.4) we obtain 

 

Eq. (2.6) in its components form yields the following equations in x, y, z 
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Similarly, another boundary condition (3.27) 

 

For    

Transmitted wave at z=+4L 

 

By diffentiating the Eq. (2.10) 

 

Addition of the above two equations (2.11) and (2.10) gives us 

 

Eq. (2.12) in it component form yields us the following equations 

 

 

 

The other boundary conditions at the metal surface are 

 

 

and, 

 

 

The Eq. (2.1) in the component form is given as 

 

 

 

THE ABSORBING BOUNDARY CONDITION CONCEPT 

According to the expansion theorem [8], a vector radiation function can be written as 
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Where  are the spherical coordinates. The first term of this series varies as  and is similar to 

the far field of an infinitesimal dipole. The basis of the expansion is the green’s theorem. 

In [3], an expansion theorem has been derived for a general -order differential operator Bm that 

exactly annihilates the first  terms of the vector expansion Eq. (3.1). Here we give an outline of that 

process. We now define the differential operator 

 

Where  

From (3.2), using (3.3) and for . We have 

 

Also for  

 

In both cases   have the effect of multiplying by   ( ) but leaving the  

dependence unchanged. Based on these observations we can write 

For m=1, 2, 3 … 

 

Where  is an arbitrary number, the superscript  denotes that the operator  is applied  times 

and simi1arly for the superscript –  denotes that the operator  is applied  times. Using 

the results from the Eq. (3.4) and Eq. (3.5) repeatedly it can be shown that 

 

Since is zero, that is, radial part of the electric or magnetic field vector vanishes at a great distance 

from the object, which is a well known fact in electro magnetics, it can be seen that the right-hand 

side of Eq. (3.7) vanishes for – , or in other words,  annihilates the first  terms of 

Eq. (3.1). Only the terms with  do not vanish but after being operated on by  these 

terms are propotional to  (Note that in spherical coordinates  includes a factor   .) 

Consequently, when  is applied to  as expanded in Eq. (3.1), we have 

 

Therefore,   can be regarded as an approximate absorbing boundary condition applicable 

to a spherical surface of radius r, which includes all sources of radiation. The same will also hold for 

any irregularly shaped surface which includes all sources. The first order Absorbing Boundary 

Conditions 

 

In this thesis we take s = 1 in cartesian coordinates the components are 

ALGORITHAM FOR MATRIX FORMATION AND ITS MANIPULATION 

The discretized form of the wave equation in chapter 2  Eqs. (2.20) – (2.22) along with the boundary 

conditions Eqs. (2.7)- (2.9) , Eqs. (2.13)- (2.15) and Eqs. (2.16) - (2.19) form the submatrix  some 
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values of which will be given in the next chapter. Before going into the calculation of      the 

program for which will be given also in the next chapter we sta 

te here the discretized form of the equations stated above. Now the discretized form of  Eqs. (2.20) –

(2.22) is 

This submatrix   is contributed by the region inside the waveguide. 

The other part of the matrix [A] formed from the contribution of the radiation region between the 

ground plane and ABS is   . This follows from the same discretized wave equation (4.1)-(4.3). 

The boundary condition for the surface of the ground plane is similar to (4.10a)-(4.10c). On the ABS 

the Eqs. (3.13) – (3.15) gives us the appropriate boundary conditions which has discretized. In this 

thesis we have not able to complete this process. The entire matrix [A] is formed like this. Suppose      

 and  

Then [A] is formed as below  

 

The rectangular matrix [P] and [Q] are generally all zeros except at the slot opening coordinates where 

the continuity of the electric field components have to be ensured. The entire matrix [A] is extremely 

large and the equation of the form Eq. (1.1) can be solved only by the conjugate gradient algorithm 

which is 

 

 

 

 

 

 

 

and starting with   

We need not calculate all [A] at a time but only one row or column as the need arises. It slows down 

the computation but decreases the memory space requirement. 

RESULTS 

Some computed values of [ ] which is a matrix of size  

Col→ 

Row 

↓ 

2483 2484 2485 2486 

2458 -155000.310000620 0 0 0 

2459 0 -155000.310000620 0 0 

2460 0 0 -155000.310000620 0 

2461 0 0 0 -155000.310000620 

2462 0 0 0 0 

2463 0 0 0 0 

2464 0 0 0 0 

SCOPE OF FUTURE WORK 

My senior Anu Mohammad studied the work of Josefsson [4] and confirmed his calculations. He 

verified the slot current distribution which is shown in Fig. 2 below. However, in Fig 3 he computed 

the same quantity with more number of basis function. It shows that the computations are still 

incomplete. Our method in this thesis if completed later will lead to better understanding of the 

problem 
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