

International Journal of Emerging Engineering Research and Technology

Volume 3, Issue 7, July 2015, PP 140-146

ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online)

*Address for correspondence:

golianjali@gmail.com

International Journal of Emerging Engineering Research and Technology V3 ● 7 ● July 2015 140

Efficient Area and High Speed Advanced Encryption Standard

Algorithm

1
G.Anjali,

2
Sudhir Dakey

1
Dept.of Electronics and communication engg, M.V.S.R Engineering college, Hyderabad

2
Assistant Professor, Dept.of Electronics and Communication engg, M.V.S.R Engineering College, Hyderabad

ABSTRACT

An efficient implementation of the Advanced Encryption Standard (AES) Algorithm. The presented architecture

is adapted for AES encryption, encryption/decryption designs. The Sub, Inv Sub Bytes operations are

implemented using composite field arithmetic. Efficient architecture for performing the mix columns & inverse

mix columns operation, which is the major operation in the Advanced Encryption Standard (AES) method of

cryptography. We perform the same using ancient Vedic Mathematics techniques. The cryptographic unit

involving mix columns & inverse mix columns for AES was designed.

Keywords: cryptography, vedic mathematics, composite field arithmetic.

INTRODUCTION

The Advanced Encryption Standard, in the following referenced as AES, is the winner of the contest,

held in 1997 by the US Government, after the Data Encryption Standard was found too weak because

of its small key size and the technological advancements in processor power. Fifteen candidates were

accepted in 1998 and based on public comments the pool was reduced to five finalists in 1999[1]. In

October 2000, one of these five algorithms was selected as the forthcoming standard: a slightly

modified version of the Rijndael. The Rijndael, whose name is based on the names of its two Belgian

inventors, Joan Diemen and Vincent Rijmen, is a Block cipher, which means that it works on fixed-

length group of bits, which are called blocks. It takes an input block of a certain size, usually 128, and

produces a corresponding output block of the same size. The transformation requires a second input,

which is the secret key. It is important to know that the secret key can be of any size (depending on

the cipher used) and that AES uses three different key sizes: 128, 192 and 256 bits. To encrypt

messages longer than the block size, a mode of operation is chosen, which I will explain at the very

end of this tutorial, after the implementation of AES. While AES supports only block sizes of 128 bits

and key sizes of 128, 192 and 256 bits, the original Rijndael supports key and block sizes in any

multiple of 32, with a minimum of 128 and a maximum of 256 bits.

AES ALGORITHM

The AES algorithm operates on 128-bit data blocks using a cipher key of possible lengths

128/192/256-bits throughout 10/12/14 iterative rounds respectively [2]. Each round consists of a set of

transformations namely: Sub Bytes, ShiftRows, MixColumns, AddRoundKey or their corresponding

inverses during decryption.

Addround Key

In this operation, a given data input (128 bits) is bitwise XORed with User defined Key (128 bits) to

generate a cipher text of 128bits.

G.Anjali & Sudhir Dakey “Efficient Area and High Speed Advanced Encryption Standard Algorithm”

141 International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015

Subbytes/Inversebytes Transformation Using CFA

Fig1. subbytes and invsubbyte block diagram

S-box has the main two transfonnations. One is the multiplicative inversion and another one is

the affine transfonnation. Fig shows subbyte and invsubbyte In Subbytes the operation is

multiplicativeinversion to affine transformation [3]. In inv subbytes, the operation is inv affine

transfonnation to m ultiplicative inversion. Affme Transformation (AT): The matrix multiplication

followed by the addition of a vector is affine transformation. The sum of multiple rotation of byte is a

vector. Here the addition operation is the XOR operation. Inv Affine Transformation (ATI): The

reverse process is inverse affine transformation. Multiplicative Inversion: Composite field of GF(2^8)

cannot directly apply through the multiplicative inversion. The computation process is made by the

decomposing the complex form of GF(2^8) in the lower order form of GF(2^2), GF(2^1) and

GF((2^2)2). The irreducible polynomial used.to go for several arithmetic operations like squaring,

multiplication, inversion and addition. Multiplicative inversion is the costliest field. These are

simplified by the simply XOR-AND gates [4].

Shiftrow/Inverse Shiftrow Operation

Shiftrow Operation:

In this operation, each row of the state is cyclically shifted to the left, depending on the row index.

 The 1st row is shifted 0 positions to the left.

 The 2nd row is shifted 1 position to the left.

 The 3rd row is shifted 2 positions to the left.

 The 4th row is shifted 3 positions to the left.

Inverse shiftrow Operation:

In this operation, each row of the state is cyclically shifted to the right, depending on the row index.

 The 1st row is shifted 0 positions to the right.

 The 2nd row is shifted 1 position to the right.

 The 3rd row is shifted 2 positions to the right.

 The 4th row is shifted 3 positions to the right.

G.Anjali & Sudhir Dakey “Efficient Area and High Speed Advanced Encryption Standard Algorithm”

International Journal of Emerging Engineering Research and Technology V3 ● 7 ● July 2015 142

Mix/Inverse Mixcolumns Operation

Mixcoloums

Mixcolumns (MC) and inverse mixcolumns (IMC) are Implemented by performing matrix

multiplication over Galois Field i.e. GF (2^8) using the irreducible polynomial x8 + x4 + X3 + x+ 1.

The constant matrices used for mix columns.

Inv mixcolumns

Final round, the Mix Column operation is omitted[5][6].

Key Expansion Architecture

The key expansion algorithm computes each 128-bit round key Kr = (wr,0, wr,1, wr,2, wr,3) column

by column using the following equations:

wr,0 = RotWord(SubWord(wr-1,3)) + wr-1,0 + RCON[r], (1)

wr,i = wr,i-1 + wr-1,i , for i = 1, 2, 3, (2)

where r expresses the round number from 1 to 10 with K0 being the input cipher key, RCON[r] is the

hexadecimal value{00,00,00,xr-1} and wr,i is the 32-bit word column i in Kr. The SubWord function

in (1) performs the SubBytes transformation on each of the four bytes of the column wr-1,3. The

conventional hardware implementation of (1) and (2) is realized by the SubWord function followed

by a successive XORing to calculate each column wr,i from the previous column wr,i-1. The proposed

KeyExpansion architecture computes the successive XORing in parallel with the SubWord function

as shown in Fig. 2. Consequently, the remaining part is only to XOR the output of SubWord function

with all four columns in parallel. Therefore, the critical path delay is decreased by 3 XOR gates

through the parallelization of the KeyExpansion steps compared to the conventional KeyExpansion

structure in [7].

Fig2. Key Expansion Architecture

NOVEL METHOD FOR MC&IMC CALCULATIONS USING VEDIC MATHEMATICS

One of the crucial mathematical operation performed during the mix column step in AES, is the

Galois field multiplication. Multiplication, being a tedious and a power hungry operation causes the

G.Anjali & Sudhir Dakey “Efficient Area and High Speed Advanced Encryption Standard Algorithm”

143 International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015

computation of mix columns and its inverse to be an even more arduous task. This is due to the fact

that, it involves matrix multiplication. Therefore, there arises a necessity to ease the entire process and

also overcome a few of the shortcomings of the previous methods mentioned in the previous section.

In order to achieve the same, the Urdhwa Tiryakbhyam Sutra of Vedic Mathematics, is incorporated

in our proposed architecture for mix columns and its inverse due to its excellence in terms of speed

and area. The Urdhwa Tiryakbhyam Sutra is one of the significant sutras in ancient Vedic

Mathematics. By its definition, Urdhwa Tiryakbhyam means “vertically crosswise”. This implies that

multiplication occurs between extreme bits of the multiplier and multiplicand. The major advantage of

this algorithm is the availability of the product of two numbers in a single step. Also, since

multiplication of two single bits reduces to a single AND operation, for a VLSI implementation this

approach proves to be both area and speed efficient[8].

Let us assume M and N are the two numbers to be multiplied and are eight bits each. Let us assume P

is the product achieved upon multiplication of M & N. The subscripts to both the letters M & N

indicate the bit positions in both the numbers. The subscript „0‟ indicates the Least significant Bit

(LSB) and the highest subscript indicates the Most Significant Bit (MSB). the multiplication of M and

N, with dots in the first row representing the bits of M and dots in the second row representing the bits

of N. Urdhwa Tiryakbhyam Sutra essentially comprises of logically cross-ANDing the bits of the

multiplier and the multiplicand. These cross-ANDed results are termed as partial products. These

partial products are immediately added so as to calculate each bit of the product. It must also be noted,

that the addition of these partial products leads to the generation of carry‟s, denoted by Ci where i=0,

1, 2 3.

P0=M0*N0 (1)

C1P1=(M1*N0)+(M0*N1) (2)

C3C2P2=(M2*N0)+(M0*N2)+(M1*N1)+C1 (3)

C5C4P3=(M3*N0)+(M2*N1)+(M1*N2)+(M0*N3)+C2 (4)

C7C6P4=(M4*N0)+(M3*N1)+(M2*N2)+(M1*N3)+(M0*N4)+C3+C4 (5)

C10C9C8P5=(M5*N0)+(M4*N1)+(M3*N2)+(M2*N3)+(M1*N4)+(M0*N5)+C5+C6 (6)

C13C12C11P6=(M6*N0)+(M5*N1)+(M4*N2)+(M3*N3)+(M2*N4)+(M1*N5)+(M0*N6)+C7+C (7)

C16C15C14P7=(M7*N0)+(M6*N1)+(M5*N2)+(M4*N3)+(M3*N4)+(M2*N5)+(M1*N6)+(M0*N7)

+C9+C11 (8)

C19C18C17P8=(M7*N1)+(M6*N2)+(M5*N3)+(M4*N4)+(M3*N5)+(M2*N6)+(M1*N7)+(M0*N7)

+C10+C12+C14 (9)

C22C21C20P9=(M7*N2)+(M6*N3)+(M5*N4)+(M4*N5)+(M3*N6)+(M2*N7)+C13+C15+C17 (10)

C25C24C23P10=(M7*N3)+(M6*N4)+(M5*N5)+(M4*N6)+(M3*N7)+C16+C18+C20 (11)

C27C26P11=(M7*N4)+(M6*N5)+(M5*N6)+(M4*N7)+C19+C21+C23 (12)

C29C28P12=(M7*N5)+(M6*N6)+(M5*N7)+C22+C24+C26 (13)

C30P13=(M7*N6)+(M6*N7)+C25+C27+C28 (14)

P14==(M7*N7)+C29+C30 (15)

Fig3. Depiction of Urdhwa Tiryakbhyam Sutra for multiplication of 8 bit numbers with the aid of dot diagrams.

G.Anjali & Sudhir Dakey “Efficient Area and High Speed Advanced Encryption Standard Algorithm”

International Journal of Emerging Engineering Research and Technology V3 ● 7 ● July 2015 144

As mentioned above, the Urdhwa Tiryakbhyam sutra is a very efficient algorithm for multiplication

and hence can be used in the Mix columns/Inverse Mix columns architecture as well. However, since

we are required to perform Galois Field multiplication and not the regular multiplication, our

proposed architecture slightly deviates from the Urdhwa Tiryakbhyam architecture. In our

implementation, instead of adding the partial products which were computed in the intermediate

stages, we logically XOR the same.

P0=M0*N0 (16)

P1=(M1*N0)+(M0*N1) (17)

P2=(M2*N0)+(M0*N2)+(M1*N1) (18)

P3=(M3*N0)+(M2*N1)+(M1*N2)+(M0*N3) (19)

P4=(M4*N0)+(M3*N1)+(M2*N2)+(M1*N3)+(M0*N4) (20)

P5=(M5*N0)+(M4*N1)+(M3*N2)+(M2*N3)+(M1*N4)+(M0*N5) (21)

P6=(M6*N0)+(M5*N1)+(M4*N2)+(M3*N3)+(M2*N4)+(M1*N5)+(M0*N6) (22)

P7=(M7*N0)+(M6*N1)+(M5*N2)+(M4*N3)+(M3*N4)+(M2*N5)+(M1*N6)+(M0*N7) (23)

P8=(M7*N1)+(M6*N2)+(M5*N3)+(M4*N4)+(M3*N5)+(M2*N6)+(M1*N7)+(M0*N7) (24)

P9=(M7*N2)+(M6*N3)+(M5*N4)+(M4*N5)+(M3*N6)+(M2*N7) (25)

P10=(M7*N3)+(M6*N4)+(M5*N5)+(M4*N6)+(M3*N7) (26)

P11=(M7*N4)+(M6*N5)+(M5*N6)+(M4*N7) (27)

P12=(M7*N5)+(M6*N6)+(M5*N7) (28)

P13=(M7*N6)+(M6*N7) (29)

P14==(M7*N7)+C29+C30 (30)

Encryption Round Architecture:

Fig4. AES Encryption Round Architecture

AES round architecture adopts the subpipelining technique through the insertion of three-level

registers to break down the critical path delay. The placement of the registers is chosen such that the

resulting stages delays are balanced while trying to optimize the number of pipelining registers used.

Fig. 4 shows the complete sub-pipelined AES encryption round architecture. The vertical grey dashed

lines represent the added sub-pipelining registers. The resulting stages delays are provided on the top

of each stage respectively as illustrated in Fig. 4[9].

G.Anjali & Sudhir Dakey “Efficient Area and High Speed Advanced Encryption Standard Algorithm”

145 International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015

Encryption And Decryption Round Architecture:

Fig5. AES encryption /decryption round architecture

AES decryption process performs the inverse encryption transformations in the following reverse

order: AddRoundKey, InMixColumns, InvShiftRows, InvSubBytes. Furthermore, the parallel

KeyExpansion is executed in the reverse order starting from the final key value. In order to follow the

same transformations order of the encryption procedure, the AES decryption is implemented using the

equivalent Inverse cipher method [1].

SIMULATION WAVEFORMS

The simulation of AES encryption and encryption/decryption round architectures is done using Xilinx

13.2 ISE design suite.The output wave form is show in below.

Fig6. Simulation of AES Encryption Algorithm

Fig7. Simulation of AES Encryption/Decryption Algorithm

Table1. Comparison between Existing and Modified Versions

Results comparison of encryption design

parameters Existing method Modified method

Slices 40691 9000

Delay(ns) 16.425 7.17

Throughput(mbps) 410.16 939.45

Efficiency(mbps/slice) 0.01 0.10

Results comparison of encryption/decryption design

parameters Existing method Modified method

Slices 42017 4733

Delay(ns) 9.868 4.457

Throughput(mbps) 180.14 398.82

Efficiency(mbps/slices) 0.0042 0.08

G.Anjali & Sudhir Dakey “Efficient Area and High Speed Advanced Encryption Standard Algorithm”

International Journal of Emerging Engineering Research and Technology V3 ● 7 ● July 2015 146

CONCLUSION

In this we have proposed a novel and efficient architecture using Vedic mathematics for performing

mix and inverse mix column computations. AES encrypt round and adapted for integrated AES

encrypt/decrypt. The Sub Bytes/InvSubBytes operations are implemented using composite field

arithmetic in order to exploit the sub-pipelining. The AES algorithm implemented using Xilinx 13.2.

REFERENCES

[1] National Institute Of Standards And Technology, “Advanced Encryption Standard(AES),”2001.

[2] t. A. Pham, s. H. Mohammad and h. Yu, "area and power optimization for AES encryption

module implementation on FPGA," in 18th international conference on automation and

computing, pp. 1-6, September 2012.

[3] M, Anitha Christy, S. Sridevi Sathya Priya, N.M. Siva Mangai, “Design And Implementation Of

Low Power Advanced Encryption Standard S-Box Using Pass Transistor Xor-And Logic,”In

International Conference,Feb 2014.

[4] Edwin Nc Mui, "Practical Implementation Of Rijndael S-Box Using Combinational Logic",

Custom R&D Engineer Texco Enterprise Pvt.Ltd.

[5] Kit Choy Xintong "Understanding Aes Mix-Columns Transformation Calculation “,University

Of Wollongong.

[6] Kit Choy Xintong "Understanding Aes Inverse Mix-Columns Transformation Calculation

“, University Of Wollongong.

[7] X. Zhang And K. K. Parhi, "High Speed Vlsi Architectures For The Aes Algorithm," Ieee

Transactions On Very Large Scale Integration (Vlsi) Systems, Vol. 12, No. 9, Pp. 957-967,

September 2004.

[8] Sushma R Huddar, Sudhir Rao Rupanagudi, Ramya Ravi, Shikha Yadav & Sanjay Jain“Novel

Architecture for Inverse Mix Columns for AES using Ancient Vedic Mathematics on

FPGA.”2013 IEEE.

[9] Salma Hesham, Mohamed A. Abd El Ghany.” High Throughput Architecture for the Advanced

Encryption Standard Algorithm”2014 IEEE.

