
 

International Journal of Emerging Engineering Research and Technology 

Volume 3, Issue 9, September, 2015, PP 18-24 

ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) 

 

*Address for correspondence:  

avireddym@gmail.com 

International Journal of Emerging Engineering Research and Technology V3 ● I9 ● September 2015    18 

Design and Implementation of Genetic Algorithm as a Stimulus 

Generator for Memory Verification 

M. Avinash 

GRIET, Hyderabad 

 
ABSTRACT 

The paper describes an approach for the generation of deterministic test pattern generator logic. This approach 

employs a genetic algorithm that searches for an acceptable practical solution in a large space of 

implementation. Its effectiveness (in terms of result quality and CPU time requirement) for circuits previously 

unmanageable is illustrated. The flexibility of the new approach enables users to easily trade off fault coverage 

and CPU time to suit their needs. 
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INTRODUCTION 

Darwin‟s principle “Survival of the fittest” captured the popular imagination. This principle can be 

used as a starting point in introducing evolutionary computation [5]. Due to the growing complexity 

of modern integrated circuits and increasing testing demands, boundary-scan approach has been 

developed and is widely adopted in practice [9]. A limited number of input/output pins represent a 

bottleneck for testing of complex embedded cores where apply large amounts of test patterns and test 

results between the automatic test equipment and the circuits under-test are required. 

The most popular technique in evolutionary computation research has been the genetic algorithm. A 

genetic algorithm is a stochastic optimization technique inspired by the principles of evolution. John 

Holland proposed the first simulated evolution algorithm that mimicked the evolutionary process in 

nature. In the traditional genetic algorithm, the representation used is a fixed-length bit string. Each 

position in the string is assumed to represent a particular feature of an individual, and the value stored 

in that position represents how that feature is expressed in the solution. Usually, the string is 

“evaluated as a collection of structural features of a solution that have little or no interactions”. The 

analogy may be drawn directly to genes in biological organisms. Each gene represents an entity that is 

structurally independent of other genes. 

Although test pattern generation (TPG) techniques for transistor stuck-open & stuck-short faults in 

Integrated Circuits are today considered mature, the test generation cost for large industrial circuits is 

still non-trivial, and very much time consuming process. The worst case complexity of the test 

generation is exponential as proven in [6].   

 

Figure1. Two input NOR gate. 
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With the increasing complexity and quality requirements for Integrated circuits, performance of TPG 

remains critical and methods that reduce the CPU time by a factor of two to three are still of great 

interests. 

There are many approaches for ATPG, like deterministic approach, simulators etc. The aim of this 

technique should be both to reduce execution time and to improve fault coverage [3]. Genetic 

algorithm described by Goldberg [5] is to solve large scale combination optimization problem. GA 

has been successfully applied in different integrated circuit designs. 

Faults in Transistor 

As we all know that there are lots of transistorized faults occur in the VLSI circuits. i.e. stuck-at fault, 

transistor open and short fault, delay faults and crosstalk[7]. Defects in VLSI devices can include 

opens and shorts in the wires that interconnect the transistors to form circuit. Opens in wires tend to 

behave like transistor stuck-open faults when the faulty wire segment is interconnecting transistors to 

form gates. 

On the other hand, opens tend to behave like stuck-at faults when the faulty wire segment is 

interconnecting gates. Therefore, a set of test vectors that provide high stuck-at fault coverage and 

high transistor fault coverage will also detect open faults. Now the DC analysis of this CMOS circuit 

is carried out. 

Now the DC analysis of this CMOS circuit is carried out. The Faults are detected based on how far 

the output value from the desired output value. 

GENETIC ALGORITHM 

A simple genetic algorithm (GA) can be used for the generation of individual test vectors for 

combinational as well as sequential circuits. In a typical GA, a “population of individuals” (or 

chromosomes) is defined, where each individual is a solution for the problem at hand. As the 

individual represents a test vector for combinational circuit test generation, each character in the 

individual is mapped to a primary input.  

If a binary coding is used, the individual simply represents a test vector. Each individual is associated 

with a fitness, which measures the quality of this individual for solving the problem. In the test 

generation context, this fitness measures how good the candidate individual is for detecting the faults.  

The fitness evaluation can simply be computed by logic or fault simulation. Based on the evaluated 

fitness, the evolutionary processes of selection, crossover, and mutation are used to generate a new 

population from the existing population. The process is repeated until the fitness of the best individual 

cannot be improved or is satisfactory [7]. 

One simple application of GAs for test generation is to select the best test vectors for each GA run. 

The pseudo code of genetic algorithm for Automatic TPG is shown in Fig.1. 

GENERATING TEST VECTORS 

In this step, test vectors are created randomly. Population size should be large in order to ensure 

adequate diversity; however, it is a tradeoff between getting higher convergence rate with larger 

search space and less genetic operation time. Population size in algorithm of [2] is constant value for 

all circuits. Experiments have proven that required population size increases with increasing test 

vector length.  

One simple application of GAs for test generation is to select the best test vectors for each GA run. A 

simple view of a test pattern generation using Genetic Algorithm is illustrated in Figure.2. The test 

generator starts with a random population of n individuals, and a (fault) simulator is used to calculate 

the fitness of each individual. The best test vector evolved in any generation is selected and added to 

the test set. Then, the fault set is updated by removing the detected faults by the added vector(s). The 

GA process repeats itself until no more faults can be detected [7]. 

Calculating the Fitness 

The fitness function provides a quantification of the quality of the chromosome. It is the fitness of the 

Chromosome that determines whether the chromosome will be selected to produce offspring and 



M. Avinash “Design and Implementation of Genetic Algorithm as a Stimulus Generator for Memory 

Verification” 

International Journal of Emerging Engineering Research and Technology V3 ● I9 ● September 2015    20 

quantifies its chance for survival among the other chromosome in the population to the next 

generation. The fitness function is problem specific. In this paper fault simulation with fault is with 

fault dropping is used in order to evaluate the test vectors. The score given to each individual is equal 

to the number of fault it detects, the fitness function for given test vector is calculated by equation (1) 

given below: 

F(x) =
NO .of  faults  detected  by  test  vector

Total  no .of  faults  detected
                (1) 

Creating a New Population 

New population is created by repeating the following steps until the new population is complete. 

Selection 

The genetic algorithm uses selection operator to simulate natural evolution. In GA, individual with 

high fitness is inherited to the next generation with greater probability. Usually, chromosomes with 

high fitness are selected for crossover to converge faster to best solution. 

Chromosomes with high fitness should not be selected for mutation to prevent the danger of diverting 

from good solutions in the search space. Therefore, chromosomes with low fitness are usually 

selected for mutation. All selection methods are based on the fitness of chromosomes [3]. The 

disadvantage of selecting chromosomes with high fitness is the probability of less diversity in the 

search space. Therefore, chromosome with low fitness is usually 

 

Figure2. Test Pattern Generation using GA. 

selected for mutation. All Selection methods are based on the fitness of the chromosome. 

Algorithm of Simple GA TPG 

test set T =Ø;  

while there is improvement do  

         initialize a random GA currentPopulation;  

         compute fitness of currentPopulation;  

         for i = 1 to maxGenerations do  

              add the best individual to test set T;  

              nextPopulation =Ø;  

              for j = 1 to populationSize/2  

              do   

              select parent1 and parent2 from currentPopulation;  

              crossover(parent1, parent2, child1, child2);  

              mutate_child1; 
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              mutate_child2; 

              place child1 and child2 to nextPopulation;  

              end for  

         compute fitness of nextPopulation;  

         currentPopulation = nextPopulation;  

         end for  

end while 

In this paper Roulette wheel selection is used to select the individuals. 

Roulette Wheel Selection 

In this scheme, the probability that an individual will be chosen as a parent for the current crossover 

operation is equal to the proportion of the individual‟s fitness as compared to the total fitness value of 

the current population [10]. The proportion of offspring produced in this scheme by a fit individual as 

compared to the offspring by a less fit individual will be proportional to the ratio of their 

corresponding fitnesses. Imagine a roulette wheel where are placed all chromosomes in the 

population, every chromosome has its place big accordingly to  

 

Figure3. Flow chart of Genetic Algorithm 
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Figure4. Roulette Wheel Selection. 

 

Figure5. Crossover & Mutation. 

Table1. Result table for faults in 2 inputs NOR gate. 

Sr. 

Test P1 P2 N1 N2 Desired Detected Fitness 

Vectors 

          

Function 

No. O S O S O S O S Output faults 

AB f(x)            

1 

00 - 1 - 1 1 0 1 0 1 

6 6/8= 0.75 01 0 0 0 1 0 0 - 0 0 

2 

00 - 1 - 1 1 0 1 0 1 

6 6/8= 0.75 10 - 1 - 0 - 0 - 0 0 

3 

00 - 1 - 1 1 0 1 0 1 

4 4/8=0.50 11 0 0 0 0 0 0 0 0 0 

4 

01 0 0 0 1 0 0 - 0 0 

4 4/8=0.50 10 - 1 - 0 - 0 - 0 0 

5 

01 0 0 0 1 0 0 - 0 0 

2 2/8=0.25 11 0 0 0 0 0 0 0 0 0 

6 

10 - 1 - 0 - 0 - 0 0 

2 2/8=0.25 11 0 0 0 0 0 0 0 0 0 

its fitness function, like on the following picture. 
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Crossover 

Traditional genetic algorithms worked on binary encodings of the problem instances. These genetic 

algorithms use simple crossover operators such as the uniform crossover and the one-point crossover 

to produce the offspring individual [10]. Crossover is the key to genetic algorithm, power that is to 

exchange corresponding genetic properties from the two parents, to allow useful genes on different 

parents to combine in their offspring. Most common crossover types are one-point, two-point, uniform 

crossover. In this paper, as shown in fig (5), two-point crossover is used. 

Mutation 

After a crossover is performed, mutation takes place. This is to prevent falling all solutions in 

population into a local optimum of solved problem. Mutation changes randomly the new offspring. 

For binary encoding we can switch a few randomly chosen bits from 1 to 0 or from 0 to 1. It says how 

often will be parts of chromosome mutated. If there is no mutation, offspring is taken after crossover 

(or copy) without any change. If mutation is performed, part of chromosome is changed. If mutation 

probability is 100%, whole chromosome is changed, if it is 0%, nothing is changed. Mutation is made 

to prevent falling GA into local extreme, but it should not occur very often, because then GA will in 

fact change to random search. 

EXPERIMENTS & RESULTS 

As mentioned in above table DC analysis of two input NOR gate is carried out. By performing this 

experiment we are getting some of the test patterns to find transistorized fault like stuck-open and 

stuck-short. 

As per result table test vector 00-01 & 00-10 has highest fault coverage. So instead of applying all the 

test vectors the optimized test vector is applied. Test vectors having very less fitness can be rejected in 

testing of the integrated circuits.  

However transistor level test derivation algorithms are complex and time consuming, hence they may 

not be practical for large circuits. 

CONCLUSION 

This paper uses genetic algorithm for fault finding in VLSI circuits. Automatic TPG tools can reduce 

the amount of effort and cost of test generation. As we go through the result table we can easily select 

the test pattern, has highest fault coverage.  

Our experimental results showed that genetic algorithm based method are efficient in test generation 

for the transistorized fault finding in VLSI circuits.  

Here the experiment is carried out at single gate level only, but it can also be applicable for large 

Integrated circuits like Micro Controller, Processors, ASICs etc. 
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