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ABSTRACT 

We present the algorithm and architecture of a BCD parallel multiplier that exploits some properties of two 

different redundant BCD codes to speed up its computation: the redundant BCD excess-3 code (XS-3), and the 

overloaded BCD representation (ODDS). In addition, new techniques are developed to reduce significantly the 

latency and area of previous representative high performance implementations. Partial products are generated in 

parallel using a signed-digit radix-10 recoding of the BCD multiplier with the digit set [-5, 5], and a set of 

positive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X) coded in XS-3. This encoding has several advantages. 

First, it is a self-complementing code, so that a negative multiplicand multiple can be obtained by just inverting 

the bits of the corresponding positive one. Also, the available redundancy allows a fast and simple generation of 

multiplicand multiples in a carry free way. Finally, the partial products can be recoded to the ODDS 

representation by just adding a constant factor into the partial product reduction tree. Since the ODDS uses a 

similar 4-bit binary encoding as non-redundant BCD, conventional binary VLSI circuit techniques, such as 

binary carry-save adders and compressor trees, can be adapted efficiently to perform decimal operations. To 

show the advantages of our architecture, we have synthesized a RTL model for�16-digit and 34-digit 

multiplications and performed a comparative survey of the previous most representative designs.  

Keywords: Parallel multiplication, decimal hardware, overloaded BCD representation, redundant excess-3 

code, redundant arithmetic 

 

INTRODUCTION 

The common multiplication method is “add and shift” algorithm. In parallel multipliers number of 

partial products to be added is the main parameter that determines the performance of the multiplier. 

To improve the speed of the BCD multiplier, radix-10 algorithm is one of the most popular 

algorithms. To achieve speed improvements one digit BCD adder Tree can be used to reduce the 

number of sequential adding stages. Further by combining both one digit BCD adder Tree and radix-

10 technique we can see advantages in one multiplier. However with increasing parallelism, the 

amount of shifts between the partial products and intermediate sums to be added will increase which 

may result in reduced delay, increase in silicon area due to irregularity of structure and also increased 

power consumption due to increase in interconnect resulting from complex routing. On the other hand  

“serial-parallel“ multipliers compromise speed to achieve better performance  for area and power 

consumption. The selection of a parallel or serial multiplier actually depends on the nature of 

application. In this lecture we introduce the multiplication algorithms and architecture and compare 

them in terms of speed, area, power and combination of these metrics. Hardware implementations 

normally use BCD instead of binary to manipulate decimal fixed-point operands and integer 

significands of DFP numbers for easy conversion between machine and user representations. BCD 

encodes a numberXin decimal (non-redundant radix-10) format, with each decimal digit Xi   

represented in a 4-bit binary number system. However, BCD is less efficient for encoding integers 

than binary, since codes 10 to 15 are unused. Moreover, the implementation of BCD arithmetic has 
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more complications than binary, which lead to area and delay penalties in the resulting arithmetic 

units. A variety of redundant decimal formats and arithmetic have been proposed to improve the 

performance of BCD multiplication. The BCD carry-save format represents a radix-10 operand using 

a BCD digit and a carry bit at each decimal position. It is intended for carry-free accumulation of 

BCD partial products using rows of BCD digit adders arranged in linear or tree-like configurations. 

Decimal signed-digit (SD) representations to allow decimal carry-free addition. BCD carry-save and 

signed-digit radix-10 arithmetic offer improvements in performance with respect to nonredundant 

BCD. However, the resultant VLSI implementations in current technologies of multioperand adder 

trees may result in more irregular layouts than binary carry-save adders (CSA) and compressor trees 

HIGH LEVEL ARCHITECTURE 

The high-level block diagram of the proposed parallel architecture for d×d digit BCD decimal integer 

and fixed-point multiplication is shown in Fig. 1. This architecture accepts conventional (non-

redundant) BCD inputs X, Y, generates redundant BCD partial products PP, and computes the BCD 

product=X*Y. It consists of the following three stages:  

1) Parallel generation of partial products coded in XS-3, including generation of multiplicand 

multiples and recoding of the multiplier operand,  

2) Recoding of partial products from XS-3 to the ODDS representation and subsequent reduction, and  

3) Final conversion to a non-redundant 2d-digit BCD product. 

 

Fig1. 

Stage 1) Decimal partial product generation: A SDradix-10 recoding of the BCD multiplier has 

been used. This recoding produces a reduced number of partial products that leads to a significant 

reduction in the overall multiplier area. Therefore, the recoding of the d-digit multiplier Y into SD 

radix-10 digits Ybd-1;...; Yb0, produces d partial products PP[d-1];...;PP[0], one per digit ;note that 

each Ybk  recoded digit is represented in a 6–bit hot-one code to be used as control input of the 

multiplexers for selecting the proper multiplicand multiple, {-5X;...;-1X;0X;1X;...;5X}. An additional 

partial product PP[d] is produced by the most significant multiplier digit after the recoding, so that the 

total number of partial products generated is d+1. In contrast to our previous SD radix-10 

implementations, 3X is obtained in a reduced constant time delay (~3 XOR-gate delays) by using the 

XS-3 representation. Moreover, a negative multiple is generated from the correspondent positive one 
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by a bitwise XOR operation. Consequently, the latency is reduced and the hardware implementation is 

simplified. The scheme proposed in also produces 3Xin constant time but using redundant signed-

digit BCD arithmetic. 

Stage 2)  Decimal partial product reduction. In this stage, the array of d+1ODDS partial products 

are reduced to two 2d-digit words (A, B). Our proposal relies on a binary carry save adder tree to 

perform carry-free additions of the decimal partial products. The array of d+1 ODDS partial products 

can be viewed as adjacent digit columns of height h≤d+1. Since ODDS digits are encoded in binary, 

the rules for binary arithmetic apply within the digit bounds, and only carries generated between 

radix-10 digits (4-bit columns) contribute to the decimal correction of the binary sum. That is, if a 

carry out is produced as a result of a 4-bit (modulo 16) binary addition, the binary sum must be 

incremented by 6 at the appropriate position to obtain the correct decimal sum (modulo 10 addition). 

Two previous designs implement tree structures for the addition of ODDS operands. In the non 

speculative BCD adder, a combinational logic block is used to determine the sum correction after all 

the operands have been added in a binary CSA tree, with the maximum number of inputs limited to 19 

BCD operands2. By contrast, in our method the sum correction is evaluated concurrently with the 

binary carry-save additions using columns of binary counters. Basically we count the number of 

carries per decimal column and then a multiplication by 6 is performed (a correction by 6 for each 

carry-out from each column). The result is added as a correction term to the output of the binary 

carry-save reduction tree. This improves significantly the latency of the partial product reduction tree. 

Moreover, the proposed architecture accepts an arbitrary number of ODDS or BCD operand inputs. 

Some of PPR tree structures presented in (the area-improved PPR tree) also exploit a similar idea, but 

rely on a custom designed ODDS adder to perform some of the stage reductions. Our proposal aims to 

provide an optimal reuse of any binary CSA tree for multi operand decimal addition, as it was done 

for the 4221 and 5211 decimal coding.  

Stage 3)  Conversion to (non-redundant) BCD. We consider the use of a BCD carry-propagate adder  

to perform the final conversion to a non-redundant BCD product P=[A+B]. The proposed architecture 

is a 2d-digit hybrid parallel prefix/carry-select adder, the BCD Quaternary Tree adder (see Section 6). 

The sum of input digits Ai , Bi at each position i has to be in the range[0;18] so that at most one 

decimal carry is propagated to the next position i+1. Furthermore, to generate the correct decimal 

carry, the BCD addition algorithm implemented requires Ai + Bi to be obtained in excess-6. Several 

choices are possible. We opt for representing operand A in BCD excess-6 (Ai belongs to [0;9], 

[Ai]=Ai + e, e=6), and B coded in BCD (Bi belongs to[0;9], e=0). 
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DECIMAL PARTIAL PRODUCT GENERATION 

The partial product generation stage comprises the recoding of the multiplier to a SD radix-10 

representation, the calculation of the multiplicand multiples in XS-3 code and the generation of the 

ODDS partial products.The SD radix-10 encoding produces d SD radix-10 digits Ybk  [-5; 5], with k 

= 0; . . . ; d-1, Yd-1 being the most significant digit (MSD) of the multiplier. Each digit Ybk is 

represented with a 5-bit hot-one code (Y1k; Y2k; Y3k; Y4k; Y5k) to select the appropriate multiple 

{1X; . . . ; 5X} with a 5:1 mux and a sign bit Ysk that controls the negation of the selected multiple. 

The negative multiples are obtained by ten’s complementing the positive ones. This is equivalent to 

taking the nine’s complement of the positive multiple and then adding 1. As we have shown in Section 

2, the nine’s complement can be obtained simply by bit inversion. This needs the positive 

multiplicand multiples to be coded in XS-3, with digits in [-3; 12]. 

 

Fig2. SD radix-10 generation of a partial product digit.   Fig3. Generation of a decimal multiples NX 

The d least significant partial products PP [d - 1]; . . . ; PP [0] are generated from digits Ybk by using a 

set of 5:1 muxes, as shown in Fig. 2. The xor gates at the output of the mux invert the multiplicand 

multiple, to obtain its 9’s complement, if the SD radix-10 digit is negative (Ysk = 1). 

On the other hand, if the signals (Y1k; Y2k; Y3k; Y4k; Y5k) are all zero then PP [k] = 0, but it has to be 

coded in XS-3 (bit encoding 0011). Then, to set the two least significant bits to 1, the input to the 

XOR gate is Ysk
* = Ysk˅Ybk is zero (V denotes the boolean OR operator), where Ybk is zero equals 1 

if all the signals (Y1k; Y2k; Y3k; Y4k; Y5k) are zero. 

In addition, the partial product signs are encoded into their MSDs . The generation of the most 

significant partial product PP [d] is described in Section 3.2, and only depends on Ysd-1, the sign of the 

most significant SD radix-10 digit. 

Generation of the Multiplicand Multiples   

We denote by NX € {1X; 2X; 3X; 4X; 5X}, the set of multiplicand multiples coded in the XS-3 

representation, with digits NXi є [-3; 12], being [NXi] = NXi + 3 € [0; 15] the corresponding value of 

the 4-bit binary encoding of NXi given by Equation [Zi] = ∑3
j=0 zi,j×2j zi,j being the jth bit of ith digit  

Fig. 3 shows the high-level block diagram of the multiples generation with just one carry propagation. 

This is per-formed in two steps: 

1) digit recoding of the BCD multiplicand digits Xi into a decimal carry 0 <= Ti <= Tmax and a digit -3 

<= Di <= 12 - Tmax, such as 
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Di + 10 x Ti = (N x Xi) + 3; (1) 

Being Tmax the maximum possible value for the decimal carry. 

2) The decimal carries transferred between adjacent digits are assimilated obtaining the correct 4-bit 

representation of XS-3 digits NXi, that is The constraint for NXi still allows different 

implementations for NX. For a specific implementation, the mappings for Ti and Di have to be 

selected. Table 2 shows the preferred digit recoding for the multiples NX. 

Then, by inverting the bits of the representation of NX, operation defined at the ith digit by 

                                      NXi = 15 - [NXi]; 

we obtain NX. Replacing the relation between NXi and [NXi] in the previous expression, it NXi  = 15 

– (NXi + 3) = (9 - NXi) + 3: 

That is,      NX is the 9’s complement of NX coded in XS-3, with digits NXi € [-3; 12] and 

 [NXi] =  NXi + 3 є [0, 15]. 

 

Most-Significant Digit Encoding 

The MSD of each PP [k], PPd[k], is directly obtained in the ODDS representation. Note that these 

digits store the carries generated in the computation of the multiplicand multiples and the sign bit of 

the partial product. For positive partial products we have 

PPd[k] = Td-1 (2) 

with Td-1 є {0; 1; 2; 3; 4} (see Table 2). For negative partial products, the ten’s complement operation 

leads to 

PPd[k] = -10 + (9 - Td-1) = -1 - Td-1 (3) 

with Td-1 € {0; 1; 2; 3; 4}. Therefore the two cases can be expressed as 

PPd[k] = -Ysk + (-1)Ysk Td-1 (4) 

Since we need to encode PPd[k] in the ODDS range [0; 15], we add and subtract 8 in Eq. (4), resulting 

in 

PPd[k] = -8 + [PPd[k]]; (5) 

with 

[PPd[k]] = 8 - Ysk + (-1)Ysk Td-1 

Note that the term [PPd[k]] is always positive. Specifically, for positive partial products (Ysk = 0), this 

term results in 8 + Td-1 that is within the range [8], [12] (since 0 ≤ Td-1 ≤ 4). For negative partial 
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products (Ysk = 1), this term results in 7 - Td -1, that is within the range. All of the -8 terms of the 

different partial products are grouped together in a constant -8 ×∑k=0
d-1 10k+d that is added as a 

constant correction term k=0 to the results of the reduction array. 

Therefore, the PPd[k]’s are encoded as [PPd[k]] without the -8 terms, which are added later (see 

Section 4.3), with only positive values of the form resulting in [PPd[k]] € [3; 12]. 

 

This encoding is implemented at bit level as an inversion of the 3 LSB’s of Td-1 if Ysk = 1 and the 

concatenation of the MSB Ysk. 

Correction Term  

The resultant partial product sum has to be corrected off-the-critical-path by adding a pre-computed 

term, fc(d), which only depends on the format precision d. This term has to gather:  

a) The -8 constants that have not been included in the MSD encoding and  

b) A -3 constant for every XS-3 partial product digit (introduced to simplify the nine’s complement 

operation). 

Actually, the addition of these -3 constants is equivalent to convert the XS-3 digits of the partial 

products to the ODDS representation. Note that the 4-bit encoding of a XS-3 digit NXi (or 9 - NXi) 

represents an ODDS digit with value [NXi] = NXi + 3 є [0; 15] (or [9 - NXi] = 15 - [NXi] є [0; 15]). 

The pre-computed correction term is given by 

 

Particularizing for d = 16 and d = 34 digit operands, the following expressions for the correction term 

in 10’s complement are obtained: 

fc(16) = -1032 + 07407407407407417037037037037037  

fc(34) = -1068 + 074074074074……… 07417037037037: 

The correction term is allocated into the array of d + 1 partial products coded in ODDS (digits in [0; 

15]), as we show in the next section. 

Proposed Decimal Partial Product Reduction 

The concepts underlying BCD (binary-coded-decimal) representations. In particular, we considered 

unsigned versus 10s-complement versions of BCD numbers. In this column we are going to consider 

how we go about adding and subtracting unsigned BCD values .Just to remind ourselves, if we are 

using an 8-bit byte to represent two "unsigned" BCD digits, then #00 to #99 in BCD equates to 0 to 

+99 in decimal (we will use "#" characters to indicate BCD values).So how would we go about adding 

two such bytes together? One technique would be to create a special adder that can directly add two 

BCD digits together, along with a Cin ("carry-in") bit, and generate a single BCD digit as output along 
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with a Cout ("carry-out") bit, as shown in 

 

Remembering that each BCD digit can only support values of 0000 to 1001 in binary (0 to 9 in 

decimal), this means a result greater than 9 will cause a carry-out. For example, 3 + 4 = 7 in decimal, 

so if we present BCD digits of #3 and #4 to our adder, we expect to see a result of #7 with Cout = 0. By 

comparison, 6 + 8 = 14 in decimal, so if we present BCD digits of #6 and #8 to our adder, we expect 

to see a result of #7 with Cout = 1. 

 

                                                                     

Fig3 



M. Saritha et al. “Design of BCD Parrell Multiplier Using Redundant BCD Codes” 

75     International Journal of Emerging Engineering Research and Technology V3 ● I9 ● September 2015 

SIMULATION RESULTS 

 

CONCLUSION 

We have presented the algorithm and architecture of a new BCD parallel multiplier. The 

improvements of the proposed architecture rely on the use of certain redundant BCD codes, the XS-3 

and ODDS representations. Partial products can be generated very fast in the XS-3 representation 

using the SD radix-10 PPG scheme: positive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X) are pre 

computed in a carry-free way, while negative multiples are obtained by bit inversion of the positive 

ones. On the other hand, recoding of XS-3 partial products to the ODDS representation is 

straightforward. The ODDS representation uses the redundant digit-set [0, 15] and a 4-bit binary 

encoding (BCD encoding), which allows the use of a binary carry-save adder tree to perform partial 

product reduction in a very efficient way.  
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