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ABSTRACT 

The binary adder is the critical element in most digital circuit designs including digital signal processors 

(DSP) and microprocessor data path units. As such, extensive research continues to be focused on improving 

the power delay performance of the adder. In VLSI implementations, parallel-prefix adders are known to 

have the best performance. Binary adders are one of the most essential logic elements within a digital system. 

In addition, binary adders are also helpful in units other than Arithmetic Logic Units (ALU), such as 

multipliers, dividers and memory addressing. Therefore, binary addition is essential that any improvement in 

binary addition can result in a performance boost for any computing system and, hence, help improve the 

performance of the entire system. Parallel-prefix adders (also known as carry-tree adders) are known to have 

the best performance in VLSI designs. This paper investigates three types of carry-tree adders (the Kogge-

Stone, sparse Kogge-Stone, Ladner-Fischer and spanning tree adder) and compares them to the simple Ripple 

Carry Adder (RCA) and Carry Skip Adder (CSA). In this project Xilinx-ISE tool is used for simulation, 

logical verification, and further synthesizing. This algorithm is implemented in Xilinx 13.2 version and 

verified using Spartan 3e kit. 

Keywords:  Ladner-Fischer, Sparse kogge stone logics.  

 

INTRODUCTION 

The first semiconductor chips held one transistor each, subsequent advances added more and more 

transistors and as a consequence more individual functions or systems were integrated over time. 

The first integrated circuits held only a few devices, perhaps as many as ten diodes, transistors, 

resistors and capacitors, making it possible to fabricate one or more logic gates on a single device. 

Now known respectively as "small-scale integration" (SSI), improvements in technique led to 

devices with hundreds of logic gates, known as large-scale integration (LSI) i.e., systems with at 

least a thousand logic gates. Current technology has moved far past this mark and today's 

microprocessors have many millions of gates and hundreds of millions of individual transistors. 

At one time, there was an effort to name and calibrate various levels of large-scale integration 

above VLSI. Terms like Ultra-large-scale Integration (ULSI) were used. But the huge number of 

gates and transistors available on common devices has rendered such fine distinctions moot. Terms 

suggesting greater than VLSI levels of integration are no longer in widespread use. Even VLSI is 

now somewhat quaint, given the common assumption that all microprocessors are VLSI or better. 

As of early 2008, billion-transistor processors are commercially available, an example of which is 

Intel's Montecito Itanium chip. This is expected to become more commonplace as semiconductor 

fabrication moves from the current generation of 65 nm processes to the next 45nm generation 
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(while experiencing new challenges such as increased variation across process corners).This 

microprocessor is unique in the fact that its 1.4 Billion transistor count, capable of a teraflop of 

performance, is almost entirely dedicated to logic. Current designs, as opposed to the earliest 

devices, use extensive design automation and automated logic synthesis to layout the transistors, 

enabling higher levels of complexity in the resulting logic functionality. Certain high performance 

logic blocks like the SRAM cell, however, are still designed by hand to ensure the highest 

efficiency. 

PARALLEL PREFIX ADDERS 

Parallel-prefix adders, also known as carry-tree adders, pre-compute the propagate and generate 

signals. These signals are variously combined using the fundamental carry operator (fco). 

(gL, pL) ο (gR, pR) = (gL+ pL•gR, pL• pR) 

Due to associative property of the fco, these operators can be combined in different ways to form 
various adder structures. For, example the four-bit carry look-ahead generator is given by 

c4= (g4, p4) o [(g3, p3) ο [(g2, p2) ο (g1, p1)]] 

A simple rearrangement of the order of operations allows parallel operation, resulting in a more 
efficient tree structure for this four bit example is 

c4= [(g4, p4) ο (g3, p3)] ο [(g2, p2) ο (g1, p1)] 

It is readily apparent that a key advantage of the tree structured adder is that the critical path due to the 

carry delay is on the order of log2N for an N-bit wide adder. The arrangement of the prefix network 

gives rise to various families of adders. Here BC is designated as the black cell which generates the 

ordered pair in equation, the gray cell (GC) generates the left signal only. The interconnect area is 

known to be high, but for an FPGA with large routing overhead to begin with, this is not as important 

as in a VLSI implementation. 

The regularity of the Kogge-Stone prefix network has built in redundancy which has implications for 

fault-tolerant designs. This hybrid design completes the summation process with a 4-bit RCA allowing 

the carry prefix network to be simplified. Parallel prefix adders allow more efficient implementations 

of the carry look-ahead technique and are essentially, variants of carry look-ahead adders. Indeed, in 

current technology, parallel prefix adders are among the best adders, with respect to area and time is 

particularly suited for high speed addition of large numbers. 

In these parallel prefix adders, mainly two types of Generate and Propagate bits are present. Generate 

and Propagate concept is extendable to blocks comprising multiple bits. For each bit i of the adder, 

Generate (Gi) indicates whether a carry is generated from that bit and 

Gi= ai&bi 

For each bit i of the adder, Propagate (Pi) indicates whether a carry is propagated through that bit 

Pi = ai        bi 

STRUCTURE OF THE PARALLEL PREFIX ADDERS 

 

Fig3.1. Parallel prefix adder structure 
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A parallel prefix adder employs 3-stage structure of carry look-ahead adder. The improvement is that 

the carry generation stage which is the most intensive one. The Fig3.1 shows the structure of ling 

adder. The ling adder uses predetermined propagates and generate in 1st stage of design. The 2nd 

stage is parallelizable to reduce time by calculating carries. The 3rd stage is the simple adder block to 

calculate the sum. 

PROCESSING COMPONENT STRUCTURE 

In order to achieve the tree operation for the parallel prefix adders, processing component structure is 

needed. Where it takes the Pin, Gin as the inputs and processes them to the other Pout and Gout 

outputs. Here one of it is to the next stage and another one to the continuous process. Fig 3.2 shows 

the processing component structure. 

 

Fig3.2. Processing component structure 

The parallel prefix graph for representation of prefix addition is shown in Fig 3.3. 

 

Fig3.3. Parallel prefix adder structure 

LADNER-FISCHER ADDER 

In 1980, Fischer and Richard Ladner presented a parallel algorithm for computing prefix sums 

efficiently. They show how to construct a circuit that computes the prefix sums in the circuit; each 

node performs an addition of two numbers. With their construction, one can choose a trade-off 

between the circuit depth and the number of nodes. 

Ladner and Fischer defined the prefix problem as: Let “o” be an associative operation on n inputs 

x1,….., xn, to compute each of products x1ox2o….oxk,1 ≤ k≤n. In the application of binary 

addition, the input of prefix computation is a group of binary vectors with two domains gi(generate) 

and pi(propagate): 

http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Prefix_sum
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(Pre-processing) 

If gi equals 1, a carry is generated at bit i; otherwise if pi equals 1, a carry is propagated through bit 

i. By prefix computation, the concept of generate and propagate can be extended to multiple bits. 

We define G[i: k] and P[i: k] (i≥ k) as: 

 

 

(Prefix-computation) 

To simplify the representation, we continue to use the same operator to denote the prefix 

computation on (G; P):(G; P)[i:k] = (G; P) [i:j]o(G; P)[j-1:k] 

The width of the (G; P) term is calculated by i-k + 1. For final outputs, Si and Ci can be generated 

from G and P:Ci= G[i:0] Si= pici-1     

(Post-processing) 

Since pre-processing and post-processing have constant delay, prefix computation becomes the core 

of prefix adders and dominates the performance. A visual representation of prefix computation 

structures is to use directed acyclic graphs. For (G; P) computation in binary addition problem, it 

has two important properties: 

Property 1: (G; P) computation is associative. That is 

(G; P)[i:k] = (G; P)[i:j] o (G; P)[j-1:k] 

= (G; P)[i:l] o(G; P)[l-1:k]; i ≥ l; j > k  

Property 2: (G; P) computation is idempotent. That is 

(G; P)[i:k] = (G; P)[i:j] o(G; P)[j-1:k] 

= (G; P)[i:j] o(G; P)[l:k]; i ≥ l > j- 1 ≥ k 

These two properties limit the design space of parallel prefix adders. That is the solution space of 

(G; P) computation covers every tree-like structures defined under bit width n. However, the same 

circuit designs were already studied much earlier in Soviet mathematics. This also has O(log2n) 

stages. Its prefix graph is shown in Fig 3.9.The Ladner Fischer Parallel Prefix Adder (LFPPA) is 

presented graphically represents the connection of carry operator node in LFPPA for the case of n = 

8. The number of majority gates required for an n-bit Ladner–Fischer adder is given by 

 

http://en.wikipedia.org/wiki/Soviet_Union
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Fig3.9. 16-bit Ladner–Fischer adder prefix graph 

The direct calculation of the carries, denoted by is given by 

 

 

 

       

Here associative operations are applied in stage 1and stage log2n. This leads to a reduction of 

majority gates, denoted Ir(n), given by 

 

 

    

The overall majority gate requirement is given by 

 

   

Ladner and Fischer’s method not only provides a possible way to achieve minimal depth, but also 

establishes a depth-area trade-off for the first time. The upper bound of area is: 
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While Ladner-Fischer adder is better than the Kogge stone adder in terms of number of cells, 

Spanning Tree adder’s delay performance is better than this Ladner-Fischer adder. 

3.7 Spanning Tree adder: 

Spanning tree adders is an existing category of adders. Basically, the performances of adders are 

evaluated with propagation delay. This spanning tree uses minimum number of multi-input gates. 

Now an example of 16-bit spanning tree adder is shown in Fig 3.10. It is a Hybrid adder, which 

consists of generate and propagate blocks as well as the full adders. Path delay is the main concern 

for these prefix adders. 

In this Spanning tree adder, “gp” is the  generate and propagate block which takes the input bits and 

produces generate and propagate bits. For example (a1, b1), (a2, b2) are two inputs, these two will 

be given to the gp block which will produce generate and propagate bits, which are basic elements 

in the parallel prefix family. 

 

Fig 16-bitspanning tree adder 

SPARSE KOGGE- STONE ADDERS 

Enhancements to the original implementation include increasing the radix and sparsity of the adder. 

The radix of the adder refers to how many results from the previous level of computation are used 

to generate the next one. The original implementation uses radix-2, although it's possible to create 

radix-4 and higher. Doing so increases the power and delay of each stage, but reduces the number 

of required stages. The sparsity of the adder refers to how many carry bits are generated by the 

carry-tree. Generating every carry bit is called sparsity-1, whereas generating every other is 

sparsity-2 and every fourth is sparsity-4. The resulting carries are then used as the carry-in inputs 

for much shorter ripple carry adders or some other adder design, which generates the final sum bits. 

Increasing sparsity reduces the total needed computation and can reduce the amount of routing 

congestion stage this is how the reduction of stages is being done and then the final sum is being 

produced by operations performed by the combination. Gp outs given as in outs to the full adders. 

The delay reduction is done by reducing the number of stages such that the low delay and low 

power and area are being consumed such that the high speed is being obtained. 
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Fig. 16-Bit Sparse Kogge-Stone Adder 

The Sparse Kogge-Stone adder consists of several smaller ripple carry adders (RCAs) on its lower 

half and a carry tree on its upper half. Thus, the sparse Kogge-Stone adder terminates with RCAs. 

The number of carries generated is lessin a Sparse Kogge- Stone adder compared to the regular 

Kogge-Stone adder. The functionality of the GP block, black cell and the gray cell remains exactly 

the same as in the regular Kogge-Stone adder. The schematic for a 16-bit sparse Kogge-Stone adder 

is shown in Fig. 3.11. Sparse and regular Kogge-Stone adders have essentially the same delay when 

implemented on an FPGA although the former utilizes much less resources. Sparse kogge-stone 

adder is nothing but the enhancement of the kogge stone adder. The block in this sparse-kogge 

stone adder are similar to the kogge stone adder. In this sparse kogge stone a reduction of number of 

stages is being done by reducing the generation and propagate units. The outputs of the previous GP 

units are being considered such that the combination of consecutive Gp units produces carry once 

and that one is being given as in-out to the next stage. The GP units blocks will be same such that 

the generation and propagation of carry is being done such that it will act as in-out to the next block 

and this operations are performed parallel add stage by. In this spanning CLA reduction of number 

of stages is being done by reducing the generation and propagates units. The outputs of the previous 

GP units are being considered such that the combination of consecutive Gp units produces carry 

once and that one is being given as in-out to the next stage .The GP unit blocks will be same such 

that the generation and propagation of carry is being done such that it will act as in-out to the next 

block and this operations are performed parallel add stage by stage this is how the reduction of 

stages is being done and then the final sum is being produced by operations performed by the 

combination Gp outs given as in-outs to the full adders. The delay reduction is done by reducing the 

number of stages such that the low delay and low power and area is being consumed such that the 

high speed is being obtained 

SIMULATION WAVEFORMS 

RTL Schematic for 32-Bit spanning tree 
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Output for 32-Bit spanning tree:- 

 

RTL Schematic for 64-Bit spanning tree:- 

 

Output for 64 -Bit spanning tree:- 

 

RTL Schematic for 128-Bit spanning tree:- 

 

Output for128-Bit spanning tree:- 

 

RTL Schematic for 32-Bit Ladner-Fischer:- 
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Output for 32-Bit Ladner-Fischer:- 

 

RTL Schematic for 64-Bit Ladner-Fischer:- 

 

Output for 64-Bit Ladner-Fischer:- 

 

RTL Schematic for 128-Bit Ladner-Fischer:- 

 

Output for 128-Bit Ladner-Fischer:- 

 

CONCLUSION 

By the observations, conventional Ripple carry adder’s delay is doubled from 16-bit order to 128-bit 

order where as in parallel prefix adders; the delay performance is changing slightly from low order 

bits to higher order bits. Number of logic levels and number of LUTs are also increased with the 

increased bit widths for all adders. But Spanning tree adder is maintaining nearly constant delay from 

16-bit to 128-bit widths as well as number of LUTs and number of logic levels. From the results, 

Spanning tree adder is performing better than conventional adders.  
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