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INTRODUCTION 

Wave processes in the form of elastic fibers in 
the isotropic and anisotropic cylindrical shells of 

constant thickness are well studied [1, 2, 3]. A 

large number of works devoted to the dynamics 

of shells described by Timoshenko model [4, 5, 
6, 7]. In [8] for the study of wave processes used 

asymptotic methods of wave propagation in a 

cylindrical shell with a small change in its 
thickness along the axis. Despite the large 

number of papers devoted to the problem of 

wave propagation in waveguides. 

The research problem of wave propagation in 

viscoelastic (cylindrical panel) variable 

thickness represents a significant theoretical 

practical interest. 

STATEMENT OF THE WAVE PROBLEM  

Regarded an endless a deformed a cylindrical 

panel with a thickness h , densities  . In the 

orthogonal curvilinear coordinate system, 

 z;; 21   at 0z  shell occupies the region 
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Curvature of the middle surface 0z  are equal 

R
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;0 21  respectively coordinates

21  and

. Within the framework of hypotheses Kirchhoff 

- Love the variation component of the 

displacement vector )(),(),( 321 xuxuxu  panels 

are determined by the following relations [1, 2] 

 

Where wu ,, – components of the 

displacement vector of the middle surface; 

21, – rotation angles with respect to the 

normal axis 21  and . 

To derive the equations panel used Virtual work  

                                                       (2) 

Where   – variation of the potential energy 

of the shell;   – virtual work of the inertial 

forces panels mass. In this paper V.V. 

Novozhilov [1], taking into account the relations 

(1) the deduction for the following expression 

based on the linear theory of elasticity 

 

where NMMS ,,,,, 2121  – forces and moments; 

 ,,,,, 211221
 – components of 

deformation of the middle surface. In (3) we 

have omitted terms are of the order 
R

h
.  

According to [1] the tangential components of 

bending deformation of the middle surface are 

expressed in terms of its movement and rotation 
angles are normal as follows 
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In turn, forces and moments associated with the 
components of the strain of defining relations 

arising from the generalized Hooke's law: 
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– modulus operator, which have the form 

[9].:  
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 t  – Arbitrary function of time;  tRE  – 

relaxation kernel; 01E  – instantaneous modulus 

of elasticity; Accept the integral terms in (5) 

small, then the function     ti Rett
 

 , where 

 t - slowly varying function of time, R - real 

constant. Next, using the procedure of freezing 

[9], we note the relation (5) approximate species 

      ЕiEE R

S

R

С  1 , 

 where 
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


0

cos  dR RR

C , 

   



0

cos  dR RR

C , respectively, the 

cosine and sine Fourier transforms core material 

relaxation. As an example, assume three 

viscoelastic relaxation parametric kernel 

    1/ tAetR t
, has a weak singularity[9]. 

  – Poisson's ratio. It is supposed that the 

inertial forces in the corners 
21  and   small 

and compared to the other forces of inertia. 

Given this, if we neglect the inertia of the 

normal rotation, the virtual work of the inertial 

forces shell can be written as: 

21)(  ddwwuuhT
F

     (6) 

After substituting (3) and (6) in (2) and standard 

procedures for integration by parts, taking into 

account the relation (4) we obtain the equations 

of motion in the form of  
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Alternative boundary conditions of the free 

edge, or anchorage, with l,02    are the 

following: the free edge  

                 
(9) 

rigid seal 

                   (10) 

Using relationships (4) and (5), (7), (8) a 

complete system of equations of motion can be 

written as eight differential equations Placing on 

the first derivatives 2 :  
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In the case of traveling along 1  harmonic 

wave solutions of the boundary value problem 

for the system (11) with boundary conditions of 

(9) and (10) allow separation of variables. 

 tki
еzu

 
 1

1 ; 
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where IR i   – complex natural 

frequency; k  – the wave number; R  – the real 

part of the complex frequency;   – density; 

  8..3,2,12 jz j   – function waveform. 

To ascertain their physical meaning of the case: 

1) IRR iCCVкk  ;  – Then the 

solution of (9) is given by a sine wave z , whose 

amplitude decays over time; 

2) RIR CViккk  ;  – Then at each 

point z  fluctuations established by 1  damped.  

Further assuming that both the shell edge 

02   and l2  – free. After substitution of 

(12) in equation (11) and taking into account the 

boundary conditions (9), we have the spectral 

Boundary Value Problem   for a system of 

eight ordinary differential equations for the 

complex function form: 
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In the analysis of the dispersion parameter of 

harmonic waves k   assume given. 

NUMERICAL ANALYSIS OF THE DISPERSION 

OF NORMAL WAVES IN CYLINDRICAL 

PANELS  

Based on the solution of the problem (13) 

orthogonal sweep method of Godunov was 

performed numerical analysis of the dispersion 

of these waves. 

Fig. 1 and 2 shows the dependence of the real 

part of the complex phase velocity of the first 

two modes of the wave number for various 

waveguides. In all variants of calculation, the 

following dimensionless parameters canister 

,1E ,1 ,25,0 1l ,  

1,0;05,0;048,0  A . 

Thickness  h    varies linearly 

  212  hhh                                (14) 

  lhhh /12   

The solid lines in the figures correspond to the 

embodiments of the constant thickness 

)1.0( 21  hh , the dotted lines characterize 

the panel with a tapered section (

0001.0h ). In the latter case, 

1.02 h , and the thickness 001.01 h . 

Parameters constant 2k  of curvature and takes 

values of 
045  and 

090 . The broken line in Fig. 

1 and 2 correspond to the considered case of 

Kirchhoff plates with -Lave 02 k . From 

Figures 1 and 2 show a qualitative difference in 

the behavior of the dispersion curves of the first 

mode, the corresponding shell and plate. If in 

the second phase velocity curve is monotonic in 

the first case there is a typical maximum range 

in the medium, which is attributed to higher 

flexural shell severity as compared with the 

plate. Actual speed of the second mode, unlike 

the case of the constant thickness also generally 

increased with increasing curvature. At the same 

time, as one would expect, the larger curvature 

2k  more slowly takes you to a site without 

dispersion movement  constc   with 

increasing wave number.  

As for the localization, it increases with 

increasing curvature (for sufficiently large k  for 

example, in 10k ). Moreover, this increased 

localization in the cylindrical panel is 

characteristic for both modes (real part of the 

complex velocity). With the growth parameter 

2k  there is a tendency to increase speed ( RС ) 

flexural mode and reduce the rate of tensional 

modes. Speed damping coefficient ( IС ) 
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bending mode decreases the rate of the 

parameters 
2k  and increases the rate of decay 

Corresponds to the torsion mode.  

 

Figure1. The dependence of the real part of the wave propagation velocity of the wave number 

CONCLUSIONS 

With the increase in the curvature of the 
cylindrical constant thickness increases the real 

part of the complex   ValCR Re  the 

propagation velocity of the first bending mode 

and decreases the speed of propagation of the 
second tensional mode.  

In the case of a wedge-shaped cylindrical panel for 

each mode, there are limits propagation velocity 

with increasing wave number coinciding in 
magnitude with the corresponding velocities of 

normal waves in a wedge-shaped plate of zero 

curvature. In the short-range localization 
movement exists and increases with the curvature 

of the panel.  

 

Figure2. Dependence of the real speed  RC  propagation of the wave number 
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