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ABSTRACT   

In this paper, the existence of analytic solutions of a class of  iterative functional differential equation with the 

form of Cz
zx

b
azxzx  ),

)(
()( is studied. By constructing a convergent power series solution of an 

auxiliary equation with the form of 

Czzgzagzgzagzgzgzga  ),()]()([)]()()][()([
22


 

the local analytic solutions for the original equation are obtained. The constant   obtained in the results is not 

only at resonance, i.e. at a root of the unity, but also near resonance (near a root of the unity) under Brjuno 

condition. 
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INTRODUCTION 

The functional differential equations with the form of      

)))((,()( zzxzfzx  ,           

 (1.1) 

have been lucubrated in [1,2]. However, such equations have been paid little attention to, which the 

delay function )( z depends not only on the argument of the unknown function, but also the state

)).(,()( zxzz    In [3,4], the authors studied the existence of analytic solution of the equations 

                                                           ))(()( zbxazxzx                                                   

and 

))(()( zxbazxzx   

respectively. Taking xxzf ),(  and 
)(

)1()(
zx

b
zaz   in (1.1). we deduce the equation of the 

form 

Cz
zx

b
azxzx  ),

)(
()(                      (1.2) 

 where a  and b  are complex. numbers )( zx  denotes the unknown complex function.        

This paper discusses the existence of analytic solutions to (1.2) in the complex field. 
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Since such equations are quite different from the usual differential equations, the standard existence 

and uniqueness theorems cannot be applied directly. It is interested to find some and all of their 

solutions under appropriate conditions. 

Set 0,0  ba , Eq.(1.2) can be changed into functional differential  equation 

),()( azxzx   

which has an entire solution of the form(see Elbert[5]) 

.
!
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a
zx   

A distinctive feature of Eq.(1.2) is that the argument of the unknown function is dependent on the 

state )( zx when 0b .and this is the case we will emphasize in this paper. Let 

,
)(

)(
zx

b
azzy                          (1.3) 

then 

.
)(

)(
azzy

b
zx


  

Therefore, in view of  Eq.(1.3),  
2

])([
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  and 

)())((
))((

zayzyy

b
zyx


 ,we have 

.
)())((])([

))((

2
zayzyy

b

azzy

zyab







 

that is 

.])([)]())(())[((
2

azzyzayzyyzya                     (1.4)                   

In order to find the analytic solution of (1.4), as in previous works [6-13], our strategy remains to 

reduce Eq.(1.4) with ))(()(
1

zggzy


  , which is called the Schröder transformation sometimes. To 

the auxiliary equation   

).()]()([)]()()][()([
22

zgzagzgzagzgzgzga                   

(1.5) 

a functional differential equation with proportional delay, and discuss analytic solution of Eq.(1.5) 

with the initial value condition 

,)0( g  

where    is a complex number. 

Assume that    in Eq.(1.5) satisfies one of  the  following conditions: 

;10)(
1

 H  




i
eH

2

2
)(  , where  QR \  is a Brjuno number [14,15]， i.e. 

 






0

1
log

)(
k

k

k

q

q
B   where }{

kk
qp denotes the sequence of partial fraction of the continued 

fraction expansion of   ,  said to satisfy the Brjuno condition; 
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,)(
2

3

piq
eH


  for some integer ,Np  , with 2p  and }0{\Zq  ,and ,

2 kil
e


  for all 

,11  pk  and }.0{\Zl    

Observe that    is inside the unit circle 
1

S  in the case of )(
1

H  but on 
1

S  in the rest cases. More 

difficulties are encountered for    on  
1

S since the small divisor 1
n

  is involved in the later ( 2.9). 

Under Diophantine condition: " ,
2 


i

e where QR \ and there exist constants 0  and 

0  such that 





 n
n 1

1  for all 1n ", The number 
1

S is "far" from all roots of the 

unity, and was considered in different settings [11]. Since then, we have been striving to give a result 

in terms of analytic solutions for those "near" a root of the unity, i.e., neither being roots of unity 

nor satisfying the Diophantine condition. The Brjuno condition in )(
2

H  provides such a chance for 

us, Moreover, we also discuss the so-called the resonance case. i.e.. the case of )(
3

H . 

ANALYTIC SOLUTION OF THE AUXILIARY EQUATION 

Theorem 2.1. Suppose )(
1

H  holds and .0,,1,0  ba   Then for any }0{\C , Eq.(1.5) has an 

analytic solution with the form 

,)(

2








n

n

n
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 (2.1) 

where .
1 a

a







  

Proof    We seek a solution of Eq.(1.5) in a power series of  the form 

,)(

0

n

n

n
zbzg 





                          

(2.2) 

where 
0

b .  By substituting (2.2) into (1.5), we get 
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Comparing coefficients, we obtain 

,0)]()1)[(1(
100
 bbabaa                        

(2.3) 

and 
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         (2.4) 

In view of the definition of  , we see that 0)()1(
0

 aba . So, we can choose 
1

b  to be   in 

(2.3). Once 
0

b  and 
1

b   are determined, the other terms of the sequence 


 0
}{

nn
b  can be determined 

successively from (2.4) in a unique manner. Now, we show that the power series (2.1) converges in a 

neighborhood of the origin. 
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Since ,10     we have 
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for some positive M . Thus, from (2.4) we obtain 
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If we define a sequence
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B ,  by  
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then in view of (2.5), by induction, we can prove .,2,1,  nBb
nn

 Now, we define the function 
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that is, 
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Define the function 

).()2
1

()1(),,,,(
32223

M
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 (2.8) 

 For ),( z  from a neighborhood of ),0(  . Since 0),,,,0( MR  , and  

,
1

),,,,0(
M

MR  


according to the implicit function theorem, there exists a unique function  

),,,( Mz  , analytic in a neighborhood of zero, such that 

  ),,,0(,),,,0( MM
z

 

and 0),,,,( MzR  . By (2.6) and (2.7), we have ),,,(),,,( MzMzH   . It follows that 

the power series (2.6), and hence also (2.1), converges in a neighborhood of the origin. The proof is 

complete. 

Next we devote to the existence of analytic solution of (1.6) under the Brjuno condition. To do this, 

we first recall briefly the definition of Brjuno numbers and some basic facts. As stated in [15], for a 

real number  , we let ][  denote its integer part and ][}{    denote its fractional part. Then 

every irrational number ][  has a unique expression of the 
,

Gauss , continued fraction 
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denoted simply by ],,,,[
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aaa  , where 
,

j
a s and 

,
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 s are calculated by the algorithm: 
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for all 1n . Define the sequences 
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aaaqp  Thus, for every QR \ , we associate, using its 

convergence, an arithmetical function 
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B  . We say that    is a Brjuno number or 

that it satisfies Brjuno condition if )(B . The Brjuno condition is weaker than the Diophantine 

condition. For example, if n
a

n
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1
 for all 0n , where 0c  is a constant, then 
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n

aaa  is a Brjuno number but is not a Diophantine condition. So, the case )(
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H  

contains both Diophantine condition and a part of   "near" resonance. Let QR \   and 
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Let 


k
A   be the set of integers 0j  such that either 

k
Aj  or for some 

1
j   and 

2
j  in 

k
A , with

k
Ejj 
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nhng   and define )( nk  by the condition 
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qnq . Clearly, )( nk  

is non-decreasing. Then we are able to state the following result.  

Lemma 2.1 ( sDavie
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)( a  there is a universal constant 0 (independent of n and  )， such that  







)(

0

1
);

log
()(

nk

k k

k

q

q
nnK   

)(b )()()(
2121

nnKnKnK  for all 
1

n  and 
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)( c ).1()(1log  nKnK
n

  

Theorem2.2 Suppose )(
2

H  holds and .0,,1,0  ba   Then for any  }0{\C , Eq.(1.5) has an 

analytic solution of the form (2.1) in a neighborhood of the origin, where   is the same number 

defined in theorem 2.1. 

    Proof   As in the proof of Theorem2.1, we seek a power series solution of the form (2.1). Set 


0

b  and 
1

b .  Then (2.4) holds. From (2.4), we have 
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where .
)1(
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a
L  To construct a majorant series of (2.1), we consider the implicit functional 

equation 

,0),,,,( LzR                       (2.10) 

where R   is defined in (2.8). Similarly to the proof of Theorem2.1, using the implicit function 

theorem we can prove that (2.10) has a unique analytic solution ),,,( Lz   in a neighborhood of 

the origin such that  ),,,0( L , and   ),,,0( L
z

, Thus 

),,,( Lz   in (2.10) can be expanded into a convergent series 

,),,,(

0

n

n

n
zCLz 





                   (2.11) 



Jing Liu “Local Analytic Solutions of An Iterative Functional Differential Equation with Deviating 

Arguments Depending on the State Derivative” 

International Journal of Emerging Engineering Research and Technology V5 ● I2 ● February 2017      27 

in a neighborhood of the origin. Replacing (2.11) into (2.10) and comparing coefficients we obtain 

that 
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Note that the series (2.11) converges in a neighborhood of the origin. Hence there is a constant 0T  

such that 
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Now, by induction, we can deduce that 
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as desired. Note that ))(()(   BnnK  for some universal constant 0 . Then 
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This implies that the convergence radius of (2.1) is at least
1)(

)(
 B

Te . This completes the proof. 

In case )(
3

H  the constant    is not only on the unit circle in C , but also a root of unity. In such a 

case, the resonant case, both Diophantine condition and Brjuno condition are not satisfied. 

 Let 
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Where  }1,,2,1:1,1max{
1




pi
i

    and  L  is defined in Theorem 2.2.  

Theorem2.3 Suppose )(
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H  holds and 0,,1,0  ba  , and p  is given as above. Let 
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If 0),(  vp  for all  ,,2,1 v  then Eq.(1.5) has an analytic solution of the form 
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in a neighborhood of the origin, where all 
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 s  are arbitrary constants satisfying the inequality  
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D  is defined in (2.14). Otherwise, if 0),(  vp  for some 

,,2,1 v  then Eq.(1.5) has no analytic solutions in any neighborhood of the origin. 

Proof   We seek a power series solution of (1.5) of the form (2.1) as in the proof of Theorem 2.1, 

where the equality (2.4) or (2.5) is satisfied. If 0),(  vp  for some natura number v , then the 

equality in (2.15) does not hold for vpn  since .01 
vp

 . In such a circumstance Eq.(1.5) has no 

formal solutions. 

When 0),(  vp   for all natural number v ,   for each v  the corresponding 
1vp

b  in (2.15) has 

infinitely many choices in C , that is, the formal series solution (2.1) defines a family of solutions 

with infinitely many parameters. Choose 
11 
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b   arbitrarily such that  
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Where 
1vp

D  is defined by (2.14). In what follows we prove that the formal series solution (2.1) 
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for all vpn  , .,2,1 v  

Let  

.,,),,,,(
10

0

  




DDzDLzW

n

n

n
               (2.18) 

It is easy to check that (2.18) satisfies the implicit functional equation 

,0),,,,,(  LzR                     (2.19) 
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Where R  is defined in (2.8). Moreover, similarly to the proof of Theorem 2.1, we can prove that 

(2.19) has a unique analytic solution ),,,,( Lz   in a neighborhood of the origin such that

  ),,,,0( L  and   ),,,,0( L
z

.  Moreover, we also have 

),,,,(),,,,( LzWLz   . Thus (2.18) converges in a neighborhood of the origin. 

Moreover, it is easy to show that, by induction, 
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Therefore, the series (2.1) converges in a neighborhood of the origin. This completes the proof. 

ANALYTIC SOLUTION OF (1.2) 

Theorem3.1 Under one of the conditions in Theorem 2.1-2.3, Eq.(1.4) has an analytic solution of the 

form ))(()(
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zggzy


    in a neighborhood of the number  , where )( zg  is an analytic solution of 

(1.5). 
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as required. This completes the proof. 

It has been  shown that under the conditions of Theorem 2.1, 2.2 or 2.3, Eq.(1.4) has an analytic 

solution ))(()(
1

zggzy


   in a neighborhood of the number  , where )( zg  is an analytic solution 

of (1.5).Since the function )( zg  in (2.1) can be determined by (2.4), it is possible to calculate, at least 

in theory, the explicit form of )( zy , an analytic solution of (1.2), in a neighborhood of the fixed point 

  of )( zy  by means of (1.3). However, knowing that an analytic solution of (1.2) exists, we can take 

an alternative route as follows. Assume that )( zx  is of the form 
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Next by calculating the derivatives of both of (1.2), we obtain 
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