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HIGHLIGHTS 

 Two dimensional electrically conducting Casson nanofluid over an exponentially slendering sheet 

with variable thickness is examined. 

 Analytical solutions are obtained using homotopy analysis method. 

 It is scrutinized that exponentially stretching sheet shows more impact on heat transfer rate when 

compared with exponentially slendering sheet. 

 Exponentially slendering sheet shows more impact on mass transfer rate when compared with 

exponentially stretching sheet. 

NOMENCLATURE 

yx,  directions along and normal to 

the surface wq  surface  heat flux 

vu,  
velocity components in yx,  

directions 

 
L

Um
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


2

1 0
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wall thickness 

parameter 

L

x

eBB 2
0  

magnetic field xNu  local Nusselt number 

T  temperature of the fluid xSh  
local Sherwood 

number 

k  thermal conductivity 
wp UC

QL
Q


02

  heat source parameter 

ABSTRACT 

In this paper, a boundary value problem which models two dimensional electrically conducting Casson 

nanofluid over an exponentially slendering sheet with variable thickness is analyzed. The impacts of thermal 

radiation, heat source, Brownian motion and thermophoretic diffusion are accounted in the flow region. 

Suitable similarity transformation is applied to bring the ordinary differential equations from the governing 

partial differential equations. These equations along with boundary conditions are solved using homotopy 

analysis method (HAM). Effects of magnetic parameter  M , Casson parameter   , velocity power index 

parameter  m , Brownian motion parameter  Nb , thermophoresis parameter  Nt , radiation parameter  R , 

heat source parameter  Q , Prandtl number  Pr  and Schmidt number  Sc  on velocity, temperature, 

concentration, friction factor, local Nusselt number and local Sherwood number are given using graphs and tables 

for 00.  (exponentially stretching sheet) and 00.  (exponentially slendering sheet). It is noticed that 

the flow over exponentially stretching sheet has more effect on heat transfer rate when compared with the 

flow over exponentially slendering sheet. 

Keywords: Casson nanofluid, thermal radiation, variable thickness, exponentially slendering sheet, HAM. 
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pC  
specific heat at constant 

pressure 
BD

Sc


  Schmidt number 

BD  Brownian diffusion coefficient xRe  local Reynolds number 

C  nanoparticle volume fraction Greek symbols 

TD  
Thermophoretic diffusion 

coefficient 
  kinematic viscosity 

T  ambient temperature   fluid density 

0Q  heat source coefficient   Electrical conductivity 

C  
ambient nanoparticle volume 

fraction 
  

ratio between the 

effective heat capacity 

of the nanoparticle 

material and heat 

capacity of the fluid 

0U  reference velocity   stream function 

L

x

w eUU 0  
stretching velocity ,  similarity variables 

 xTw  temperature at the surface   
dimensionless 

temperature in  ,  

 xCw  
nanoparticle concentration at 

the surface 
  

dimensionless 

temperature with 

respect to  ,0  

A  
coefficient related to 

exponentially stretching sheet 
  

dimensionless 

nanoparticle volume 

fraction in  ,  

f  
dimensionless stream function 

in  ,  
  

dimensionless 

nanoparticle volume 

fraction with respect to 

 ,0  

'F  
dimensionless fluid velocity 

with respect to  ,0  
  dynamic viscosity 

L  reference length 
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ambient dynamic 

viscosity 

m  
velocity power index 

parameter w  wall shear stress 
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INTRODUCTION 

There has been expeditious development in the 

study of laminar boundary layer flow and heat 

transfer over a stretching surface in the presence 
of magnetic field due to their voluminous 

applications in different fields like in 

aerodynamics, extrusion of plastic sheets, glass 

blowing, cooling procedure of metallic sheets, 
glass fiber production, etc. Sakiadis [1] initiated 

the study of stretching flow problem. Crane [2] 

induced the study of two dimensional boundary 
layer flow in which velocity varies linearly with 

a distance from a fixed point. The problems of 

Sakiadis and Crane were widened by many 
researchers under various situations. Cortell [3] 

analyzed the heat transfer behaviour over a 

nonlinear stretching sheet. Rajnish and Nageswara 

Rao [4] proffered an amendment in the 

linearization of 
4T  to glean the realistic 

complexion of temperature distribution. 

Nanofluids have extensive uses in various 

scientific fields and industries due to their stable 

nature and free from other problems like 

sedimentation, erosion, additional pressure drop, 

etc. These fluids find applications in power 

generators, micro manufacturing, automobiles, 

etc. Tiwari and Das [5] and Moaiga et al. [6] 

deduced that thermal conductivity can be 

increased by the introduction of nanoparticles in 

the fluids and hence the features of heat transfer. 

Sheremet [7] obtained the numerical solutions 

for the free convection flow of nanofluid under 

thermal stratification. Das et al. [8] discussed 

the boundary layer slip flow and heat transfer of 

nanofluid over a stretching sheet. Mabood et al. 

[9] reported the properties of nanofluid flow 

over a nonlinear stretching sheet. Shehzad et al. 

[10] have taken the convective mass condition 

and analyzed the MHD boundary layer flow on 

nanofluid. Ramana Reddy et al. [11] observed 

the higher heat transfer rate in Ag-water when 

compared with TiO2-water nanofluid. Extensive 

literature on nanofluid flows can be found in 

[12-19]. 

Variable thickness sheets are generally used in 

machine design, nuclear reactor technology, 

architecture, etc. The concept of variable 

thickness sheet was initiated by Lee [20]. Fang 

et al. [21] applied this to the boundary layer 

flow. Anjali Devi and Prakash [22] studied the 

hydromagnetic flow properties over a variable 

thickness stretching sheet. Srinivas Reddy et al. 

[23] illustrated the impact of radiation on 

Williamson nanofluid. Prasad et al. [24] 

reported that the nanofluid flow over a variable 

thickness stretching sheet decelerates with 

suction and opposite results exist with injection. 

Casson fluid [25] is a non-Newtonian fluid 

which exhibits yield stress. It is a worthful model 

for many fluids such as blood, chocolate, honey, 

etc. Casson fluid constitutive equation delineate 

a nonlinear relationship among stress and rate of 

strain and has been observed to be perfectly 

admissible to silicon suspensions, suspensions of 

bentonite in water, and lithographic varnishes used 

for printing inks. Raju et al. [26] reported the heat 

and mass transfer behavior of MHD Casson fluid 

over an exponential permeable stretching surface. 

Ibrahim et al. [27] analyzed the mixed convection 

flow of Casson nanofluid with chemical reaction 

and heat source. The magnetohydrodynamic 

(MHD) stagnation point flow of Casson nanofluid 

over a nonlinear stretching sheet in the presence of 

velocity slip and convective boundary condition is 

studied by Ibrahim et al. [28]. Malik et al. [29] 

obtained the similarity solutions for the flow 

Casson nanofluid over a vertical cylinder which 

is stretched exponentially. Pramanik [30] studied 

the thermal radiation effect on Casson fluid past an 

exponentially porous stretching surface. Afify [31] 

studied the viscous dissipation and chemical 

reaction effects on Casson nanofluid. 

Here we analyze the MHD flow over an 

exponentially slendering sheet with thermal 
radiation and heat source. In the mathematical 

model Brownian motion ( )Nb and thermophoretic 

diffusion ( )Nt  of nanoparticles are considered. 

The obtained model was solved by HAM. It has 

been proved that this technique is a worthful 
approach in dealing with various problems [32-

35]. 

MATHEMATICAL FORMULATION 

Consider a steady two dimensional forced 

convection MHD Casson nanofluid over an 

exponentially slendering stretching sheet with 
variable thickness. Thermal radiation and heat 

source are considered in the energy equation. 

We also considered the combined effect of 
Brownian motion and thermophoresis. The 

stretching velocity at the free stream is of the 

form L

x

w eUU 0 . The Casson fluid flow is 

assumed to occupy the domain 


yeA L

x

2  

as shown in the Fig. 1. It is also assumed that a 
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magnetic field of strength L

x

eBB 2
0  is applied 

perpendicular to the Casson nanofluid flow. wT  

and wC  are taken as the wall temperature and 

nanoparticle concentration,  T  and C are the 

ambient values of temperature and nanoparticle 

concentration. 

Figure1. Coordinate system of the Casson nanofluid 

flow 

The rheological equation of state for an isotropic 

and incompressible flow of a Casson fluid is 
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where B  is the dynamic viscosity of the non-

Newtonian fluid, yp  is the yield stress of the 

fluid,   is the product of the component of 

deformation rate with itself, jiji ee , jie  is 

the  thj,i  component of the deformation rate 

and c is the critical value of this product based 

on the non-Newtonian model.  

Under the boundary layer approximations, the governing equations for of this problem can be 

expressed as 
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The boundary conditions are 
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By using Rosseland approximation, we have 
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Taylor’s series is utilized in taking the following expression 
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We assume that the surface is retained at a temperature and nanoparticle volume fraction 
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Here u  and v  satisfy the continuity equation. Equations (2) to (5) become 
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The boundary conditions are 
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To execute the calculations easily, we avail the functions 
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In nanofluid problems, the physical quantities of interest are friction factor  fC , wall heat transfer 

 xNu and the volume fraction mass transfer  xSh is defined as: 
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where 


LU
Re w

x   is the local Reynolds number. 

HAM 
To build up the homotopic solutions of equations (11) to (14), we pick up the initial guesses and linear 

operators as follows 
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where )i(Ci 7to1 are the arbitrary constants. 

We construct the zeroth-order deformation equations 
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 where ]1,0[p  is the embedding parameter, 21  , and 3 are non-zero auxiliary parameters and 

21 N,N
 
and 3N

 
are nonlinear operators. 

The nth-order deformation equations are follows 

      ,111  F

nnnn RFFL                                             (22) 
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with the following boundary conditions  

     

   

    ,0,00

,0,00

,0,00,00







nn

nn

'

n

'

nn FFF

                                                     (25) 

where  

  ,2
1

11
1 1

1

0
1

1

0
11 



 











 









 

'

n

'

i

n

i

'

in

''

i

n

i
in

'''

n

F

n FMFFFF
m

FR


                                              (26) 

  ,

NtNb

QFF
mPrR

'

i

n

i

'

in

'

i

n

i

'

in

ni

n

i

'

in

n

i

'

iin
''

nn
























 









































1

0
1

1

0
1

1

1

0
1

1

0
1

1
1

1

3

4
1                           (27) 

  ,FF
1m

Sc

Nb

Nt
R i

n

i

'

in

n

i

'

iin

''

n

''

nn 




 


 












1

0
1

1

0
111                                         (28) 










.n,

,n,
n

11

10
                                                    (29) 

Convergence of HAM

 
The auxiliary parameters 21,  and 3  

controls and adjust the convergence of the 

obtained series solutions. To acquire the apt 

values for these parameters  - curves are 

portrayed in Fig. 2. From this figure, the 

presumable interval of auxiliary parameter is 

 0.0,4.1 .  

The solutions are convergent for whole region 

of   when 65.0321   . Table. 1 

shows the convergence of the method. 
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Figure2.  -curves of  0''F  0'

 
and  0'  

for 15th order approximation. 

Table1. Convergence of HAM solutions for different 

orders of approximations when 

 

 
Order )0(''f  )(' 0  )(' 0  

5 0.936668 0.613336 1.177725 

10 0.936614 0.613506 1.175343 

15 0.936612 0.613362 1.175846 

20 0.936612 0.613443 1.175672 

25 0.936612 0.613453 1.175740 

30 0.936612 0.613463 1.175732 

35 0.936612 0.613464 1.175727 

40 0.936612 0.613464 1.175727 

45 0.936612 0.613464 1.175727 

RESULTS AND DISCUSSION 

The percussion of retained pertinent parameters 

on the velocity, temperature, concentration, 

friction factor, local Nusselt number and local 

Sherwood number are explained. 

For numerical solutions we considered the non-

dimensional parameter values as 

 

 

These values are reserved in entire study apart 

from the variations in consequent figures and 

tables. 

Raise in the magnetic parameter M  proffers 

some boost to the resistance force known as 

Lorentz force which reduces the velocity and 
enhance the temperature and concentration in 

both 0  and 0 . This is delineated in 

Figs. 3 to 5. Figs. 6 to 8 elucidate the proclivity 

of Casson parameter   on the distributions. It 

is seen that velocity decelerates and temperature 

and concentration raise with  .  This appears 

duo to the increase of plastic dynamic viscosity 

with  . This is observed in both 0  and 

0 . Fig. 9 to 11 illustrate the impact of 

velocity index parameter m  on velocity, 

temperature and concentration. These 

distributions increase with m . This is due to the 

increase of slenderness in the sheet with m . 

This is observed in both 0  and 0 . 

Heat energy will be released with the increase of 

radiation parameter R  as a result temperature 

increases with R . The thickness of the thermal 

boundary layer is much more in 0  than 

0  case. This is represented in Fig. 12. Due 

to the slow rate of thermal diffusivity which is 

induced by the increasing values of Prandtl 

number Pr , temperature decreases and mixed 

behavior is observed for concentration profiles. 

It is observed that thickness of the thermal 

boundary layer is much bigger in 0  case 

compared to 0  case. This is elucidated in 

Figs. 13 and 14.  

Fig. 15 presents the effects of the Brownian 

motion parameter Nb on the temperature 

profiles of the flow. It is observed that with the 

increment in Nb , temperature of the nanofluid 

increases in both 0  and 0  cases. This 

may happen since the Brownian motion 
enhances the colloidal fluid particle interaction. 

Physically when there is higher thickness in the 

sheet, particle to particle interaction is more. 
Hence flow over exponentially slendering sheet 

shows higher temperature profiles compared 

with exponentially stretching sheet.  Fig. 16 

depicts the influence of Nb on the concentration 

profiles of nanofluids. Increase in values of Nb  

shows reduction in nanoparticles diffusion for 

0  and 0 cases. Figs. 17 and 18 

demonstrate the effect of thermophoresis 

parameter Nt on temperature and concentration 

distributions. Rising values of Nt  improve the 

temperature and concentration profiles for both 

0  and 0  case. Physically due to 

movement of nanoparticles from hot to cold 

region with the increase of Nt  causes increase 

in nanoparticle volume fraction and nanoparticle 
concentration boundary layer thickness. 

Due to the production of heat energy in the flow 

region by the increment of heat source 

parameter Q  temperature raises with Q . This is 

given in Fig. 19. Through Fig. 20, we illustrate 

the prepotency of Schmidt number Sc  on 

concentration profiles. It is perceptible that an 

enhancement in Sc  depreciates the 

concentration. This due to the lower molecular 
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diffusivity for the higher values of Sc . Impact 

of M  and   on friction factor is shown in Fig. 

21. It is seen that 
fC  decelerates by elevating 

the values of M  and  . Fig. 22 explores the 

fluctuations of local Nusselt number for various 

values of Nb  and Nt  which decreases with the 

increase of Nb  and Nt . From Fig. 23, it is 

noticed that local Nusselt number decreases 

with the increase of Q  and R . Fig. 24 shows 

that local Sherwood number decreases by the 

increase of Pr  and Sc . 
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Figure3. Effect of  M  on  'F . 
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Figure4. Effect of  M  on   . 
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Figure5. Effect of  M  on   . 
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Figure6. Effect of    on  'F . 
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Figure7. Effect of    on   . 
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Figure8. Effect of    on   . 
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Figure9. Effect of  m  on  'F . 
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Figure10. Effect of  m  on   . 
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Figure11. Effect of  m  on   . 
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Figure12. Effect of  R  on   . 
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Figure13. Effect of  Pr  on   . 
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Figure14. Effect of  Pr  on   . 
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Figure15. Effect of  Nb  on   . 
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Figure16. Effect of  Nb  on   . 
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Figure17. Effect of  Nt  on   . 
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Figure18. Effect of  Nt  on   . 
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Figure19. Effect of  Q  on   . 
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Figure20. Effect of  Sc  on   . 
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Figure21. Effect of M  and   on fC . 
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Figure22. Effect of Nt  and Nb  on xNu . 
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Figure23. Effect of Q  and R  on xNu . 
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Figure24. Effect of Pr  and Sc  on xSh . 

In order to verify the accuracy and reliability of 

the present analysis, the obtained results have 

been compared with that of Bidin and Nazar 

[36] and Nadeem et al. [37] solutions for the 

limiting case when 

 

As shown in Table 2, the comparison in the 

above case is found to be in good agreement. 

Table2. Comparison of  0' . 

Pr  R  

Bidin and 

Nazar 

[36] 

Nadeem et 

al. [37] 
HAM 

1.0 0.0 0.9547 -- 0.954784 

 0.5 0.6765 0.680 0.676511 

 1.0 0.5315 0.534 0.531442 

2.0 0.0 1.4714 -- 1.471462 

 0.5 1.0735 1.073 1.073520 

 1.0 0.8627 0.863 0.862771 

CONCLUSIONS 

Here, we analyzed the MHD flow over an 
exponentially slandering sheet with radiation 

and heat source. In this procession, we 

delineated some graphs to perlustrate the 
pursuance of a few governing parameters on the 

flow field. The following conclusions have been 

made through this study. 

 Nb  and Nt  are capable to magnify the 

temperature of the fluid. 

 Enhancement in the velocity power index 

parameter index parameter exhibits the 

acceleration in velocity, temperature and 
concentration profiles. 

 Immense thermal boundary layer is noticed 

in 0 when compared with 0 . 

 Schmidt number has propensity to decelerate 

the concentration field. 

 There is a perceptible decrease in heat 

transfer rate with enhancing values of Q  and 

R . 
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