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INTRODUCTION 

The problem of the action of elastic waves on 
single obstacles of simple form (cylindrical, 

spherical, and others) has been investigated [1-

6], where the concentration of stress is carefully 

considered and the displacement field near the 
obstacle is studied closer. However, the effect of 

elastic (diffraction problems), the more viscoelastic 

waves on several obstacles, has not been fully 
investigated. In this paper, a methodology for 

investigating this problem has been developed. 

The need for the theory of diffraction and 
scattering by spatial and planar lattices has led 

to the appearance of a large number of papers on 

the diffraction of acoustic and electromagnetic 

waves on systems of scattering centers. A task 
of this type was considered by the authors of [7-

9], but their approach cannot be directly 

extended to elastic waves. On the other hand, 
the method of multiple scattering, which is 

essentially an iterative process based on a 

systematic refinement of the results of the 
single-scattering approximation, was used in 

[10, 11]. This method can be used directly in 

problems on the propagation of elastic waves. In 

this paper we obtain a solution of the problem of 
the diffraction of a plane harmonic wave on 

parallel cylindrical layers with a liquid.  

STATEMENT OF THE PROBLEM   

Suppose that the viscoelastic medium is not 

constrained by the parallel arrangement of a 

cylindrical tube with a liquid (Fig. 1). The 

equation of viscoelasticity in vector form has the 

form[12,13]: 
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where ,k k   - the Lame coefficients, defined 

by formulas 
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- displacement vector, f(t)– derived time 

functions,     ,k kR t R t     – relaxation 

core "to" body,  кE0 – instantaneous elastic 

modulus "to the" th body. The operators entering 

into equation [14] for the right system of curvilinear 

orthogonal coordinates are defined as follows 

grad
q

i
q

i
q

i











  

1 1 1

11 1

1

22

2

33 3

3      
2

  

rotu
q

G



1  ,            

divu
q

u
q

q
u

q

q
u

q

q

   










 









 





















1

1

1

11 2

2

22 3

3

33













,     

G

q i q i q i

u q u q u q



11 1 22 2 33 3

1 2 3

1 11 2 22 3 33

  













, 

ABSTRACT 

The paper deals with the stress-strain state of a parallel cylindrical tube with a liquid under the action of 

harmonic waves. The problem is solved in a bicylindrical coordinate system under the action of harmonic 

waves. An analytical solution is obtained in special Bessel and Hankel functions, as well as numerical 

results. Parametric analysis of the dynamic stress coefficient is carried out. 

Keywords: cylindrical tube, liquid, harmonic waves, bicylindrical coordinate system, special functions. 



On the Vibration of Parallel Cylindrical Shells Under the Action of Harmonic Waves 

2                        International Journal of Emerging Engineering Research and Technology V6 ● I6 ● 2018  

where i- curvilinear coordinates (i = 1,3), qij -

components of the metric tensor, determined by 

the formula: q
x
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,xk-Cartesian 

coordinates (k = 1,3), the q-square of the 

Jacobian of the transformation of the Cartesian 

coordinate system, and the curvilinear coordinate 

system. For orthogonal curvilinear coordinates, 

only the diagonal terms of the tensor matrix qij 

are not equal to zero. In this case 
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quadratic form is defined by the formula: 
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  . To determine the stress 

state of the ground and the setting of mixed 

boundary conditions, it is necessary to have 

formulas expressing the stress through 

displacement. We use the geometric equations 

derived by Novitskii B. 
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In addition, we use the equation of state 
(Hooke's law) [15] 
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As unknowns, we use the components of the 

displacement vector 
uur ,  and 

zu . The 

cylindrical coordinate system is related to the 

Cartesian coordinate system by the following 

relations: 

x=rcos;   y=rsin, z=z, ds
2
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Using formula (5), we obtain 
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 As coordinates i (i=1,3) applicable: 

1=r, 2=, 3=z            (6)                 

Substituting (5) and (6) in (1), and the resulting 

expression into formula (4) and taking into 

account, we obtain the following system of 

Lame equations in cylindrical coordinates: 
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Here the indices r,  and z, behind the brackets 
denote the partial derivatives with respect to the 

corresponding coordinates. The boundary 
conditions along the outer surface of the pipe - 

the condition of ideal contact with the ground, 

the inner surface is free: 
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       (8)  where the 

subscripts "1" and "2" denote respectively the 

materials of the environment and the pipe. If in 

a cylindrical tube with a liquid, then the 

boundary conditions ensuring the equality of the 
normal components of the fluid and shell 

velocities are  
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where  v


- fluid particle velocity; 

n - 

normal surface at r=a, w- radial displacement of 

the shell, 02RD  . In order to completely 

complete the formulation of the problem, it is 

necessary to add conditions at infinity to 

conditions (8) and (9) 

u 0 

at   R x y z   2 2 2   (10) 

For non-stationary problems, the causality 
principle is required as the radiation conditions, 

and in the medium there should be no 

displacements outside the region bounded by the 
leading edge of the waves from the oscillation 

sources. 

 
Fig1. The calculation scheme 

METHODS OF SOLUTION   

We consider the problem of the dynamic 

theory of linear elasticity, the effect of seismic 
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waves on pipes stacked in a high embankment 

in two strands and filled with an ideal 

compressible fluid. In this case, let us consider 

the case when the wave falls perpendicular to 

the axis connecting the tube centers, and to 

the longitudinal axis of these tubes. The 

calculation scheme is shown in Fig. The 

bicylindrical coordinate system is related to the 

Cartesian coordinate system by the following 

relations: 

x=(a sh)/(ch- cos), y=(a sin)/( ch - 

cos), z=z (11)          

where: a - half the distance between points 

=- и =. 

Then, representing (11) in (5), and the resulting 

expressions in (6) take the following form: 
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Assuming that: 1=, 2=, 3=z  and 

substituting (12) and (13) in (1) - (11), and, 

taking into account that the problem is flat, 

we obtain the following Helmholtz equation 

in bipolar coordinates: 
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 Equation (14), after certain transformations, 

reduces to the form in  
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We seek the solution of equation (14) in the 

form of a series: 
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Substituting (17) into (16) and equating the 

coefficients for the corresponding harmonics, 

we obtain the following ordinary differential 

equation: 
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we reduce (18) to the Bessel equation of the 

form 
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which has a particular solution in the form 

of a cylindrical function z(2ake
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), and the 

solution of the Helmholtz equation takes the 

following form: 
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Now we put the boundary conditions. To this 

end, we use condition (20), the substitution 

r= и =. Taking into account the obtained 

relations, we will seek the solution of the 

boundary value problem for the case of a 

fall in two underground pipes of the P-wave 

of compression and the SV-wave of the shift 

perpendicular to the y-axis. The wave 

potential wave has the form    

( )p i x i tAe    .                   (21). 

 To represent (21) in the form (20), we write 

(21) with the aid of (12) in bipolar 

cylindrical coordinates.  
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Expanding the second factor of expression 

(22) into a Fourier series (complex form) 

and after small transformations we obtain 

the final expression for the potential of the 
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where =2aexp( ) and for the potential of 

the incident SV-wave: 
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potentials 1 and 2: 
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Substituting (24) and (25) in (8) we obtain 

the final solutions to the problems of the fall 

of the P and SV waves respectively on two 

underground pipes. Arbitrary fixed (An, Bn, Cn 

and others) are determined from a system of 

algebraic equations with complex coefficients  

[C]{q}={}.                (26) 

where C is the determinant of (12x12) -

order, the elements of which are the Bessel 

and Hankel functions of the 1 st second kind 

of the n-th order, q is the column vector of 

unknown quantities, and  is the vector of 

the right-hand side. A system of algebraic 

equations with complex coefficients is solved 

by the Gauss method with the separation of the 

principal element. Dynamic VAT in case of a 

fall-wave shift to two underground pipes is also 

recorded in bipolar coordinates in an 

asymptotic form: 
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Uncertain coefficients An,Bn,Cn is determined 

from the boundary conditions. Consider the 

definition of the dynamic stress-strain state of 

a cylindrical tube under the action of harmonic 

waves. To solve the problem, an addition 

theorem is applied. The addition theorems for 

cylindrical wave functions are derived in 

[4,5,6]. Let there be two different polar 

coordinate systems (rg,g) and (rk,k) (Fig. 3), 

in which the polar axes are equally directed. 

Pole coordinate k in the q system will be 

Rkq, kq, so that equality 
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i

k
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Formula (28) makes it possible to transform 

the solution of the wave equation (1) from 

one coordinate system to another. Consider 

the calculation of an extended underground 

multi-thread pipeline for seismic action within 

the framework of the plane problem of the 

dynamic theory of elasticity. In this case, we 

investigate the case of stationary diffraction of 

plane waves on a series of periodically located 

cavities, supported by rings with an ideal 

compressible fluid inside. The solution of the 

problem is realized by the method of potentials. 

The boundary conditions have the form (8). 

The form of the incident potential will not 

change either. The potentials of the waves 

reflected from the tubes after the application of 

the addition theorem, and taking into account 

the periodicity of the problem, will have the 

form: 
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where: =kcos, - distance between pipe 

centers. 

The refracted wave potentials in the tubes 

are written in the form 

( ) (1) (2) ( )

2 1 2

0

( ) ( ) ,i m in

n n n n n

n

e E C H r D H r e     


 



     

( ) (1) (2) ( )
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0

( ) ( ) ,i m in

n n n n n

n

e E E H r F H r e     


 



       (31) 

and the velocity potential in the ideal form 

of a compressible fluid 

( ) ( )

3 3

0

( ) ,i m in

n n n

n

e E G J r e    


 



         (32) 

Unknown coefficients An-Gn are determined 

by setting (29) - (32) in (8). As a result, an 

infinite system of linear equations is obtained, 

which is solved by an approximate reduction 

method, provided that relation 

k n  ( cos )1 2     

The general characteristic of the program is 

designed for multi-threaded pipes in the 

embankment for the case of a drop in seismic 

waves perpendicular to the axis passing 

through the pipe centers. The information 

entered contains the minimum necessary 

data: the elastic characteristics (E and ) of the 

soil of the embankment and the pipes; density 

of soil, pipes and liquids filling it; internal and 

external pipe radii; the predominant period of 

oscillation of soil particles; coordinates of 

the point where the VAT is located; seismic 

coefficient.  

 
Fig2. Scheme to the addition theorem. 

With the help of a special label, it is possible to 
calculate pipes filled with an ideal compressible 

fluid, or empty ones. The calculation of the 

cylindrical Bessel and Hankel functions is 

carried out according to known formulas. The 
solution of the system of linear equations is 

carried out by the Gauss method with the 

separation of the principal term. 

NUMERICAL RESULTS AND DISCUSSIONS 

Effect of distance between pipes 

Table 1 shows the values of the coefficient          

     max max( / ( ) rr A2 2  

the maximum radial pressure of the soil on the 

pipes at different distances d between them in 

the event of a P-wave fall. In this case, the wave 

number of the P wave r=1,0: inner and outer 
radius of pipes R0=0,8 m and R=1,0 m: the 

predominant period of oscillation of soil 

particles is T = 0.2 sec. Soil Characteristics: 

Permanent Lamé 1=8,9-МPа; 1=4,34МPа; 

density 1=1,74Кn sеk
2
/m

4
. 

 
)( tkxiАе    

Fig3. The calculation scheme 

Pipe material characteristics 2=8690МPа; 

2=12930МPа; 2=2,55Кn sеk
2
/m

4
. We take the 

following parameters: 

1,0;05,0;048,0  A .   From tables 

1 it follows that as the distance between the 

pipes 0,5d/D1,0 coefficient max increases by 
5%. And with a further increase, d / D> 1.0 

decreases more sharply by 10%. For d / D> 2.0, 

the value max stabilizes, i.e. practically does not 

change, with l4,0 close to the value max for a 
single pipe according to calculations. 
Consequently, the mutual influence of 

reinforced concrete pipes of multiline stacking 

takes place with the distance between them 

d4,0D and leads to an increase in the 
maximum dynamic pressure of the soil on them 
compared to a single pipe. This effect of 

increasing the coefficient  max is associated 
with the imposition of waves reflected by 

several surfaces of multicell pipes. In this case, 

the nonmonotonic increase in the coefficient 

max with a decrease in the distance between the 

tubes d / D is connected in our opinion with the 
phenomenon of interference superimposed after 

reflection of the waves. 
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Table1. The value of the coefficient of dynamic 

concentration at different distances between the 

tubes for the case of P-wave incidence 

D/d  0,5  1,0  2,0  4,0 

max  1,68  1,76  1,61  1,60 

This phenomenon is extremely important for the 

practice of designing seismic underground 
multiline pipelines, since allows you to choose 

the optimal distance between the pipes, in which 

the dynamic pressure during seismic action is 
minimal. For example, in tables 1, such a 

distance is d = 0.5D. It is well known to note, 

for comparison, that in the case of static action, 
the reverse picture is observed: the ground 

pressure on multicell pipes is less than that for a 

single one. In addition to the above, when 

analyzing the influence of the distance between 
pipes on their VAT, it is necessary to take into 

account the relation (28), (the so-called "slip 

points"), at which a significant increase in the 
dynamic stresses in the vicinity of the tube-

resonance is observed. This phenomenon is 

known from optics called Wood's anomaly is a 

feature of the multi-threaded pipeline and 
cannot arise in a pipeline laid in one thread. 

From the point of view of design practice, it is 

necessary to know at what distance it is possible 
to lay pipes so that a dangerous phenomenon of 

resonance does not arise. The answer to this 

question is given by the relation (27). Let us 
analyze this relation for the case of the action of 

P and SV seismic waves on a subterranean 

pipeline. Tables 2 show the dependence of the 

maximum distance in the light between the centers 
of the pipes dmax, at which there is no resonance, 

from the angle of incidence of seismic waves . 

Table2. Dependence of distance Dmax from the angle 

of incidence . 

. 
рад 

 0 30 45 60 70 80  90 

Dmax,

M 

 5,

0 

5,

36 

5,

86 

6,

66 

7,

45 

8,

52 

 10

,0 

From tables 2 it follows that the smaller the 

angle of incidence of the seismic wave on the 

pipeline, the closer it is to each other to stack pipes. 

Thus, the appearance of resonance in multi-

threaded pipes can be avoided by choosing the 

appropriate distance between them and, thereby, 

ensuring the seismic stability of the pipeline. 

Influence of the type of seismic action (P-, SV- 

or SH-wave). Tables 3 give the values max the 

maximum radial pressure of the soil on the pipes 

in the event of a fall in the P- and SV-seismic 

waves at different distances d between the pipes. 

At the same time, r=2. Analysis of the data in 

Tables 3 shows that for d / D <4.0, the 

coefficient values max, for P-wave and SV-wave 

are as if in antiphase. That eats, at l / D = 1.0, 

the maximum seismic effect of the P-wave is 

27% higher than that of the SV wave. At d / D = 

2.0, the maximum seismic effect of the P-wave 

is 7% lower than that of the SV wave, and at d / 

D = 4.0 again higher, but only 1%. At the same 

time, as the distance between the pipes increases, 

the difference in these effects decreases and at d / D 

= 4.0 it practically disappears altogether. In 

addition, we note that when an SV-wave is 

applied, the values max at different distances 

between the pipes has a 2.5 times greater spread 

(up to 25%) than when the P wave is applied (up 

to 10%). Thus, the phenomenon of "local 

resonance" manifests itself more strongly for 

seismic action in the form of an SV wave. 

Table3. Coefficient value max with seismic actions 
in the form of P and SV waves at different distances d 

between the pipes 

    d/D max 

 P – wave  SV - wave 

1,0 1,76  1,29 

2,0 1,61  1,72 

4,0 1,60  1,51 

Influence of fluid filling pipes 

Tables 4 show the values of the coefficient max 
in the case of a fall of P-wave on empty and 

water-filled pipes at different distances d 

between the pipes. The density of the liquid was 

assumed equal to 3=0,102Кn sеk
2
/m

4
.  From 

Table 4 it follows that the presence of water in 

the pipes increases seismic effects on them 

compared to empty pipes. Obviously, this is due 

to the increase in the weight of the pipeline. The 
maximum dynamic pressure of the soil on the 

pipes is enhanced. 

For example: for d / D = 1.0, the difference in 
the values of the coefficient d / D = 2.0-10%, 

with d / D = 4.0-19%. In addition, we note that 

the spread of the coefficient values max at 
different distances d pipes filled with water are 

less (7%) than for empty pipes (10%). 

Table4. Coefficient value max for the case of the fall 
of P-wave on empty and water-filled pipes 

    d/D max 

 P - wave SV - wave 

1,0 1,76 1,89 

2,0 1,61 1,78 

4,0 1,60 1,90 
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Influence of the length of the incident seismic 

wave 

Tables 4 show the values of the coefficient max 

different lengths l0/l0-2/, р - wave incident on 

empty pipes, located at a distance l = 1,0D from 
each other. 

Table5. Values of the coefficient max  for different 
lengths l0 P - waves. 

l0/D 3,0  5,0  10,0 

max 1,76  1,52  1,20 

From tables 5 it follows that the greater the 

length of the incident seismic wave, i.e. The 

denser the soil of the embankment, the lower the 

coefficient max. For reference, we note that 

relation l0/D=5,0 – not in bulk sand, sandy loam 

and clayey soils; l0/D=10,0 - clay soils. Thus, 

the type of soil, and especially its density, has a 

significant effect on its dynamic pressure on the 

pipes under seismic action. Hence it follows that 

when erecting a mound over pipes, it is 

necessary to carefully compact the bulk ground. 

It is interesting to note that a good compaction 

of the soil can also reduce its static pressure on 

the pipes. In addition, the calculations show that 

when l0>10,0D The dynamic problem reduces to 

a quasistatic problem, which essentially simplifies 

its solution. From this follows the important 

conclusion that the quasistatic approach is not 

applicable to the calculation of the seismic 

effect of pipes under embankments. 

Effect of wall thickness of pipe 

Tables 6 give the coefficients max for different 

thickness t of the reinforced concrete pipe wall 
in the case of a P-wave fall onto empty multi-

threaded pipes, stacked multi-threaded pipes 

laid at a distance d=0,5. 

Table6. Coefficient value max for different pipe wall 

thicknesses t 

d/D  0,08 0,1  0,15  0,2 

max  1,60 1,66  1,66  1,68 

From Tables 6 it follows that the range of wall 
thickness, practically does not affect the 

dynamic pressure of the soil, not these pipes. 

This is most likely due to the fact that the 

harmonic wave does not penetrate the reinforced 
concrete pipe due to the sufficient rigidity of the 

pipe. 

CONCLUSIONS 

 Under the harmonic (seismic) effect, the 

mutual influence of reinforced concrete pipes 

of multiline stacking takes place at a distance 

d> 4,0D  

 ( ad 2 ) between them and leads to an 

increase in the maximum dynamic pressure 

of the ground on them as compared to a 
single pipe (local resonance phenomenon) by 

5-10% . 

 The appearance of resonance in multicell 

pipes can be avoided if the distance between 

them is chosen not to the length of the incident 

harmonic wave. This phenomenon of resonance 

is a feature of the multi-threaded pipeline and 

cannot arise in a pipeline laid in one thread. 

The phenomenon of local resonance 

manifests itself more strongly for seismic 

action in the form of SV-wave than P-waves. 

 The denser the soil of the embankment, the 

less seismic impact on underground pipes. 

When l>10D (wavelength) the dynamic 

problem is reduced to quasistatic. Also, the 

change in wall thickness and concrete class 

practically does not affect the dynamic 

pressure of the soil on reinforced concrete 

pipes under seismic action. 

 Maximum dynamic ground pressure max on 

pipes laid in two strings at a distance d <3.0D 

from each other, more than a single pipe. 

This excess reaches 15%. 

 The presence of liquid in the pipes, as a rule, 

increases the pressure max for a single pipe 
by 20% and for two thread pipes by 5-10%. 

The exception is densely packed pipes d = 0, 

for which the pressure max decreases by 4%. 
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