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INTRODUCTION 

Underground structures of the system are one of 
the main components of oil and gas and 

petrochemical industries, therefore their safety 

depends to a large extent on the technical 
condition of the pipelines. Under the most 

unfavorable operating conditions are underground 

structures of the pump and compressor systems, 

because they experience significant vibrations, 
both from the side of machines and from the 

side of the transported environment. These 

effects are of a complex nature and are caused 
by pressure pulsation, flow failure, direction 

change and speed of its movement, acoustic 

resonances, interaction of flows at the pipeline 

branch points and other factors. In a number of 
cases, the vibration effect is transmitted to the 

supports by the construction through the ground 

[1,2].When designing underground pipeline 
systems, it is practically impossible to take into 

account the interaction of the factors listed 

above, to assess the level and parameters of the 
vibration effects on the constructed system and, 

consequently, to determine the resource of safe 

operation of pipelines.  

The resource of underground structures 
experiencing vibratory action is determined by 

the level of cyclically changing stresses, which 

lead to accumulation of damages in the most 

stressed areas and subsequent fatigue failure or 

leakage of joints. Therefore, to predict the 

resource, it is necessary to be able to properly 
evaluate the stress-strain states of underground 

constructed systems, which simulates the body 

located in a deformable half-space. Various 
methods are used to solve dynamic problems. 

These are, of course, difference schemes, the 

method of generalizing relaxation, the method 

of integral relations, the method of splitting, 
cells, and others. In recent years, one of the 

most effective numerical methods for solving 

boundary value problems in continuous media 
mechanics, the finite element method [3,4], has 

become very popular. It has a simple physical 

interpretation of basic computing operations, as 
well as the presence of computer programs, 

which provides a high degree of automation of 

labor-intensive operations of drawing up and 

solving the system of equations. This method 
has a number of varieties. The choice of this or 

that version of the method is largely determined 

by the nature of the problem and, to a large 
extent, by the "taste" of the researcher, although 

some ideas have already been developed about 

these methods. For example, as pointed out in 
[5], the difference method leads to a large, 

memory loading of the machine memory, which 

is a certain disadvantage in solving large-scale 

systems. But the difference method gives the 
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value of functions, which oscillates less. There 

are other features of this method. Many studies 
are based on the finite element method. It should 

be noted that with the development of the finite 

element method, its connection with other 
approximate methods became apparent. At 

present, it is believed that all the approximation 

processes used in solving problems described by 
differential equations are essentially a single 

whole [6]. However, when using these or other 

schemes, various computer algorithms of formation 

are realized that solve the system of equations. The 
problem in simple cases (when a cylindrical 

cavity or body) is analytically solved, but the 

numerical realization of the results obtained 
allows significant errors in the calculations [7]. 

THE APPLICATION OF THE FINITE ELEMENT 

METHOD 

The problem is solved numerically, by the finite 
element method. The basic idea of the finite 

element method is that continuous quantities 

(displacements, stresses, pressures, etc.) are 
approximated by a discrete model on a finite 

number of subdomains. For this purpose, a 

design area is selected, which is discretized by a 

finite number of elements. These elements have 
common nodal points and in aggregate 

approximate the initial design area. A 

continuous value is approximated on each 
element through nodal values using interpolation 

polynomials. Interpolation polynomials 

approximate continuous functions in 
mathematical equations describing the physical 

process under study. Then the discrete model 

constructed in this way must satisfy the 

boundary (boundary and initial) conditions of 
the problem. Satisfaction of these conditions is 

carried out using various approaches known in 

the finite element method. Discretization of the 

computational domain   on the elements is the 

first step towards the solution of the problem. 

This step is very important, because a bad or 
imperfect discretization can lead to erroneous 

results. When choosing the sampling, the main 

attention is paid to the following rules: - smaller 
sampling should be performed in areas where 

large gradients of values are expected, and in 

places where the boundary of the computational 
domain changes; - to achieve rational numbering 

of elements and nodes of the sampled area, it is 

necessary to use sequential numeration of nodes 

when moving in the direction of the smallest 
body size. After the sample area has been 

sampled, the calculated parameters have been 

selected and entered into the program, it is 
possible to obtain a solution of the selected class 

of problems. It is necessary to test the problem 

on a model problem for this class of problems. 
After the task is tested, you can proceed to 

complicate the calculation area, boundary 

conditions, etc. The smaller the differences in 

the model problem and the specific technical 
task, the greater the reliability of the solution 

obtained. Therefore, the need for rigorous 

analytical solutions will always be relevant. Any 
calculation should be duplicated by a calculation 

with a smaller sampling area. Depending on the 

difference in the results of such comparative 

calculations with a continuous value, one can 
judge the ratio of the results of the calculation 

scheme used. For the numerical solution of the 

problem, an introduction  , which is a finite 
part of the half-space P; It is necessary to set 
and solve problems for the finite domain  

1 2 3    , 

Where 1 -cross-sectional area of buried 

building; 2 - area of selections area, 3 -

internal surface of a buried structure. 

 

Fig1. Calculation scheme 
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Let us consider the linear vibrations of an elastic 

half-space containing a rectangular obstacle 
under the action of a harmonic wave. For non-

stationary problems, the principle of causality is 

required as the study conditions: in a medium, 
there must be no displacements outside the 

region bounded by the leading edge of the 

waves coming from the oscillation 
sources.   Boundary conditions on the boundary 

of the calculated region for fission dynamic 

(seismic) effects. When solving problems for 

infinite elements from an infinite half-plane, 
studies are made of the calculated domain of 

finite dimensions. The region under 

investigation is discretized and it becomes 
necessary to set up such conditions on the 

boundary that would not manifest itself on the 

results of the solution due to reflection, which 
occurs with long-term dynamic influences.   

Some researchers propose to consider solutions 

only a certain distance from the boundary of the 

region [8.9], considering that the reflection of 
the wave does not have time to reach this site in 

the considered period of time. Sometimes it is 

advisable to introduce additional artificial 
damping into the calculation area, increasing as 

we approach the boundary [10]. In Lismer's 

paper [11], boundary conditions were proposed 

for a finite computational domain, allowing one 
to simulate an infinite medium. These boundary 

conditions pass the wave through the boundary 

of the calculated region without reflection, that 
is, the so-called standard viscous boundary is 

obtained. The tasks of the standard viscous 

boundary are carried out by replacing the 
reaction of the parts of the half-plane that are 

not pressed into account by distributed loads  

and , calculated formulas: 

=Срu; =bСs;                               (1) 

where u and  - the velocity of the points on the 
boundary of the body, respectively, along the 

coordinates Х1 and Х2 , and b -  unlimited 

options; - material density;  Срand Сs–the 
velocity of the longitudinal and transverse 
waves, respectively. Similar conditions can be 

considered as setting a viscous damper on the 

boundary. For solving non-stationary problems, 

it is applied to the stimulated parts of the region 

and to the conditions [12, 13]. To solve the 
problem, steady oscillations of cylindrical 

bodies, in the selected part, the Lismer 

conditions [11].  

In the absence of external loads 01 0    The 

problems of natural oscillations of a mechanical 

system. External loads can be changed by 

harmonic law, i.e. 
0( ) ;i tf t Pe t    . 

Then the problems of steady oscillations of the 

mechanical system are solved. The results for 
the action of an arbitrary load can be obtained 

using the Duhamel integral: 

;)()()(

1

0

dtTtTP
t

t kk 



  

           (2) 

where Р(t)-impact of an arbitrary kind;

( )k t  - solution obtained by the action of 

(2). The problem is considered in the following 

statements. 

 Investigation of the stress-strain state of a 

cylindrical body with an internal radius, and 

in external b (Figure 1), located in an 

unbounded elastic medium, under the action 
of elastic or non-stationary waves. 

 Investigation of the proper oscillation of a 

cylindrical body with an internal radius a 

and an external b located at a distance H 

from the free surface of the half-space. 
Investigation of the stress-strain state of a 

cylindrical body with an internal radius a 

and with an external b (Figure 1) with the 
action of elastic harmonic waves. 

 Find the stress - strain state of a cylindrical 

or rectangular body and its surrounding 

medium under the action of elastic non-

stationary waves. 

MATHEMATICAL FORMULATION OF 

PROBLEMS. 

For the mathematical formulation of problems, 

the principle of possible displacements is used, 

according to which the sum of the work of the 
active and mass forces acting on the system, 

with possible displacements is zero 

  
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

2

1

1 2 3

1 20

210

0
2

210
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dddA

jij
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                                                       (3) 
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Here U


, 
ijij  ,  - displacement vectors, 

components of stress and strain tensors;  δU


; 

δεıj-variations of displacements and 
deformations; ρ1, ρ2, ρ3 – density of the material 

of the elements of the system under 

consideration,  νJ –direction cosines of the outer 

normal; f


-mass force vector; p


1-vector of 

external forces applied to the area 2
. To 

solve the problem (3), we need boundary and 

initial conditions that are automatically satisfied 

for the variation formulation. The mathematical 

formulation of the Eigen vibration problem 
involves the variation equations (1), which are 

written in the form 




 0dUUdA nijij


  .                                                                  (4) 

Need to find  w  and the corresponding own form 

*U


,  satisfying the equation (4) for any 
*U


 . 

In the absence of external influences, the 

natural oscillations of the mechanical system 
are considered. In this case, solutions (3) are 

sought in the form  

( , ) ( )exp( )U x t U x i t 
  

                         
(5) 

where    R Ii    и ***

IR iUUU 


- 

complex quantities. 

If a hole is acted upon by a harmonic wave, 

then the displacementsU


points (the selected 

region) is searched as a sum [8,9]. 

),,(),(),( *

0 txUtxUtxU


                   (6) 

Where ),(0 txU


- which you want to define. 

The formulation of the problem for the desired 
function includes the variational equation 

1 2 1 2

* 2 11 * 2 11

1 1 2ij ij ij ij ij ijd U Ud U Ud             
    

               

1

33 3 1

* *

1 0ij j j

x

i v u d Ud    

  

  

  

  
 ,                                                                 (7) 

radiation conditions at 

3
x


и
* *

1

3
1

: 0
dU iU

dx c
 

 
                                                                                           (8) 

 
1

1
0; Ux


  . 

It is necessary to determine the time-periodic 

solution of the variational problem (8), which 

satisfies the boundary conditions for any δŪ*. 
To solve the initial-boundary value problem (3) 

- (8), we use the method of finite elites formed 

in displacements.   

OF COURSE - THE ELEMENTAL EQUATIONS 

OF THE MECHANICAL SYSTEM.   

The FEM procedure involves a transition from 

differential dependencies, for individual finite 

elements, to a global system of equations for the 

entire array. For linear problems of non-

stationary interaction, this global system in the 

matrix form usually has the form: 

          ,FqKqSqM    (9) 

Here  [M],[K],[S] – respectively, the mass, 
damping and stiffness matrix of the system; 

 q  ,  q ,  q  - acceleration, velocity and 

displacement vectors; {F} – vector of external 

loads; [p] – matrix of external damping. 
Matrices of masses, damping and stiffness of the 

finite element system composed of the 

corresponding matrices of elements 

     



n

ji

jiMM
1,

,
;    




n

ji

jiSS
1,

,

;   



n

ji

jiKK
1,

,
. 

The stiffness matrix of an element has the form 

       
S

T

ji dxdyBDBK ,
, 
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where  

      
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

The matrix of masses of an element is defined 

by the relation 

     dxdyNNM j

T

i

S

ji  ,
. 

A matrix damping element - the ratio 

 
T

i, j i j

S

S v N N dxdy      
, 

Where: ν – coefficient of damping. The mass 

matrix for a triangular element can be 
represented in the following form 

,

6

1
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0
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6

1

][ AhM ij 

 

Where ρ – the density of the material; A is the 

area of the element; Ћ – thickness of the 
element. 

Analytical methods for solving linear systems of 

ordinary differential equations (9) are well 

known. However, because of the high order of 
the matrices, their practical implementation is 

possible in large part only by approximate 

numerical methods. The most popular are the 
finite-difference relations of one or another 

modification. Dimension of the matrix [ρ] 

corresponds to the dimension of the matrix of 
the system [М], [S], [К], nonzero terms which 

refers to the established viscous boundary and 

for points located on the vertical boundary and 

are equal to 

,; 122 ipiiiiSiii lCPlCP   
   

(10) 

where ρi – the density of the material near the i-

point under consideration, Csi,Cpi– the velocity 
of transmission respectively of the transverse 

and longitudinal waves in the material at about 

ί−ů points;li-the average distance between the 
dampers are installed around  ί−ů points. For the 

points of the horizontal boundary in equation 

(9), the indices need to be interchanged. The 

discretization of the considered region is carried 

out with the help of triangular elements [14].  

METHOD OF DISCRETIZATION IN TIME IN 

PROBLEMS OF ELASTIC WAVES ON HOLES 

In the problems of nonstationary action of 

elastic waves on the hole, the duration of the 

process is sufficiently small and direct 
integration is the most effective method for 

solving them. Equations of equilibrium (9) for 

direct integration are satisfied not at any time, 
but at some given (sufficiently small) time 

interval  Δt. The study of the accelerations, 

velocities, and displacements of the system is 

considered within a given time interval. The 
transition from differential equations with time-

dependent coefficients to equations with 

constant coefficients is carried out by using the 
approximation of speed and acceleration by 

finite-difference expressions in displacements or 

velocities. The method of direct integration is 
divided into methods of explicit integration, 

where the velocities, accelerations and 

displacements are calculated from the 

equilibrium equation at the time (the method of 
central differences). 

Computing was done for 1020 triangular finite 

elements. The system of inhomogeneous 
complex algebraic equations was solved by the 

Gauss method, with the following initial data:  

1=0.20,    2=0.33,    Н/R=2.10, 15. E1/E2= 0.1.
 The results of the calculations are 

shown in Fig. 2. Fig. 2 shows the results of 

calculations for H/= 3 (curve 1) and 4 (curve 

2). It can be seen that with increasing depth, the 
voltage decreases noticeably. With increasing 

depth of deposit (H/) the values of the 
numerical results tend to the result of solving 

the problem of diffraction of waves on a body 
located in an infinite medium (Fig. 2). Thus, the 

numerical solutions obtained show that the 

depths of the deposit (H/) when the stress is 
deformed under the action of elastic waves, 

depends on the parameters Н /аand 2а/. The 
oscillation of the elastic half-space of the 

rectangular contour containing the barriers 
under the action of harmonic waves is 

investigated. It is established that the depth of 

the deposit affects the stress-strain state of the 
body. Concentration of voltage with increasing 

depth of deposition and wavelength approaches 

the static value of voltage. The developed 

calculation technique allows one to study the 
natural oscillations of piecewise homogeneous 

deformable systems in an elastic medium with 
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allowance for internal and wave dissipation of 

energy. The dimension of the matrix [p] 
corresponds to the dimensionality of matrices of 

the system [M], [S], [K] whose zero terms 

belong to the established standard viscous 
grenade and for points on the vertical boundary 

are equal 

Р2i=i*Csi*li;  Р2i-1=i*Cpi*li; 

Where  i – the density of the material near the  

considered i - ’ points; Csi, Cpi – the velocity of 
transmission respectively of the transverse and 

longitudinal waves in the material in the vicinity 
of i - u points; li – the average distance between 

the damped by about i - u points. For the points 

of the horizontal boundary in equation (10), the 
indices need to be interchanged. The matrix 

differential equation (9) can be written out in 

finite-difference form using the Newmark 

method [15] 

 

jjj

jjjjjjjj

FqFF

qqqkqqS
t

qqqm
t

















22

222222

)21(

])21(][[)]()[
2

1
()2]([)

1
(                 (11) 

Where  j, j+1, j+2 – past, present and future 

values of variables; -parameter chosen from 
the conditions of numerical stability and 

accuracy. 

In this example, it is adopted =;                                                                                               

Thus we obtain a system of linear algebraic 

equations, which is solved by a time step. 

From Newmark's Proposition [15], the 
following relations were used to determine the 

displacement and velocity: 

];}{}){
2

1
[(}{}{}{

];}{}){1[(}{}{

121

11









jjjjj

jjjj

qqqqq

qqqq









                                          (12) 

Where   characterizes the circuit damping =1/2 at which there is no attenuation. 

The relation (10) can be represented in the form of an algebraic system 

1[ ]{ } { }  j jA q R  , 

where       1

2 2

2 1
{ } { } ( [ ] [ ]){ } { }

( ) ( )

j j j jR F M K q q
t t

   
 

                                       (13) 

implement a typical procedure for computing 

the variable vector q(t). 

Then, in the case of diagonal matrixes of 

elements' masses, the matrix of the system is 

also diagonal. The time integration step is 

assumed to be equal to   0,12510
-4

 with a 

minimum period of free oscillations of the 

element 6,2810
-4

 s. Time stepped out of the 

condition that its change to a change in voltage 

and speed in the nodes. 

The written technique allows to effectively 

solve equation (13) through the Gaussian 

elimination procedure at each time step. This 
path is more effective than iterative methods. 

When implementing the account, the basic 

properties of the system's stiffness matrix are 
used: symmetry, positive definiteness, ribbon. 

All this contributes to the minimum use of main 

memory and computer time. When solving the 

problem of natural oscillations, a combination of 
MCE and the Mueller method is used. The 

reliability of the constructed algorithm 

demonstrates, for example, the solution of the 
problem of the diffraction of harmonic waves on 

a cylindrical cavity, for which there is an 

analytical solution (test). The initial data for 

solving the problem using the program contain 
the following information: the applied impact in 

the form of accelerations (an accelerogram) or 

(instantaneous, impulsive or time-dependent); 

elastic and dynamic characteristics of the 
structure and the environment; The parameters 

describing the sampling of the chosen 

calculation area are presented in a special way. 
As a result of solving the problem, using these 

programs, we obtain vertical and horizontal 

accelerations, velocities and displacements, 
stress and strain tensor components for elements 

of the finite element grid of the computational 

domain. Of course, elemental discretization of 

the computational domain is carried out by 
triangular elements.  

NATURAL OSCILLATIONS OF PIECEWISE 

HOMOGENEOUS DEFORMABLE SYSTEMS 

WITH ALLOWANCE FOR INTERNAL AND 

WAVE DISSIPATION OF ENERGY  

Let us consider the natural oscillations of the 

medium in the presence of a cylindrical hole. 
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The mathematical formulation of the problem of 

natural oscillations involves variation equations, 
which are written in the form 

                    0- 1

2

ij 


 Ududvij  (14) 

With the help of the developed FEM algorithm, 
the variation problem (14) reduces to the 

complex algebraic eigen value problem 

       2( ) =0, k i c M q                   (15) 

where      , ,  M c k  – respectively, the mass 

matrix, the damping of the stiffness of the 

system;  q  – displacement vectors; To 

determine the natural frequencies of oscillations, 

it is necessary to find the eigen values, which 
are the roots of the frequency equations (15). All 

eigen values can be determined using Mueller's 

iterative method [16].  

Researcher Number of 

nodes 
Frequency i(rad / s) 

1 2 3 4 5 6 

I.A. Konstantinov 25 

36 

144 

29,73 

29,1 

1441 

68,42 

68,01 

68,43 

79,94 

75,33 

73,61 

124,21 

122,21 

114,23 

156,14 

152,43 

161,47 

173,52 

176,00 

168,83 

L.A. Rozin 144 27,53 68,45 73,67 114,4 161,47 168,63 

Author of the 

work 

144 

78 

45 

27,45 

28,56 

28,67 

64,88 

66,75 

69,39 

73,87 

77,79 

76,17 

125,37 

121,72 

131,8 

161,41 

187,8 

166,4 

173,41 

188,22 

207,11 
        

The Mueller iterative method is a quadratic 

interpolation scheme that gives fast convergence 

in the neighborhood of the solution root even for 

a rough first approximation. The reliability of 

the approach adopted in the work for finding the 

natural frequencies is shown in the example of 

the problem of oscillations of a plate in the form 

of a rectangular triangle of 100 m and a base of 

75 m, considered by IA Konstantinov and LA 

Rozin (table). It is also shown that the values of 

the vibration frequencies become stable with the 

number of nodes 60-80; further entrainment the 

number of nodes does not lead to a significant 

refinement of frequencies, although considerable 

computer time is expended. 

As an example, let us consider the natural 

oscillations of a cylindrical layer in an elastic 

medium. The problem reduces to solving a 

system of homogeneous algebraic equations 

(15). From the condition for the existence of a 

solution of homogeneous algebraic equations, it 

is necessary to determine the equations (15) 

must be equal to zero. The frequency equation is 

solved by the Mueller method, and the value of 

the left-hand side of (15) for each iteration is 

determined by the Gauss method with the 

separation of the principal element. If we 

assume that 1=2, 1=2, E1=E2.We obtain the 

results of calculating the natural vibration 

frequencies of a cylindrical hole in an elastic 

medium. The results obtained coincide with the 

results obtained in [12] with a difference of up 

to 10% (N = 150, v = 0.20). Now we study the 

process of propagation of vibration in 

deformable media from the rectangular body of 

Figure 2. To a rectangular body we apply a 

harmonic load, then we obtain an algebraic 

system of complex equations. 

         2 2( 2 4 ) =  k i c M U P     .  (16) 

Here  U  - vector of complex amplitudes of 

oscillations of the system; P  is a vector of 

external load amplitudes, -frequency of 

external load. A computer calculation was made 
for 1020 triangular finite elements. In Figure 2. 

Curves-modules of the displacement amplitudes 

of the body's vertical oscillations are presented 
under the action of a load with a unit amplitude. 

The following initial data were accepted   

1=0.36, 2=0.20, 1/2 =0.85, E1/E2= 0.01, 

H/= 2.0 

It can be seen from Figure 2. That as the 

frequency and distance increase, the displacement 

amplitudes decrease. Consequently, in the case 
of diffraction of plane harmonic waves in a half-

space, there are always surface surface waves. 

Their amplitude on the surface X2=0 depends on 
the depth of the tunnel. With increasing H, it 

decays exponentially. An analysis of this 

solution allows us to draw a practical conclusion. 
Extensive underground structures in seismically 

hazardous areas are like generators of surface 

waves in earthquakes, transforming partially 

falling seismic waves into secondary surface 
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waves. The presence of such in homogeneities 

on the path of a seismic wave affects the 
formation of the surface Rayleigh wave. The 

shape of the cross-section of cylindrical bodies 

is of no fundamental importance for this 
phenomenon. The obtained numerical results 

(Figures 3, 4, 5) show that the depth of the 

deposit  H/ noticeably on the stress-strain state 
of the body. Under the action of surface 

Rayleigh waves, as the depth of deposition 
increases, the value of the dynamic stressed-

deformed state approaches the static result 

(Figure 6). In the region of long waves, the 
depth of deposition has a particularly strong 

effect on the stress-strain state. With increasing 

depth of deposit ( / )H a   the values of the 

numerical results tend to the result of solving 

the problem of diffraction of waves on a body 

located in an infinite medium (Figure 7). Thus, 

the numerical solutions obtained show that the 

depths of the deposit ( / )H a  when the stress is 

deformed under the action of elastic waves, 

depends on the parameters /H a   and 2 /a   

 

Fig2.Calculation scheme. 

 

Fig3. Changing the ring voltage as a function of the 

frequency of external disturbances. 

                                       N=288                       N=160   

                                  Мao,Pao       

 

Fig4. The change in the ring voltage as a function of 

the frequency of external perturbations. 

 

Fig5. Measurement of displacements as a function of 

distance х2 at 1.w=0.2, 2.w=0.8. 

 

Fig6. Addiction 0* on a free body contour from the 

values of the parameter /.  

 

Fig7. 
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Fig8. The results of theoretical studies 

In the static theory of underground structures, 

the effect of aridity is more or less, the 

experimental was investigated [1, 2, 3].In the 
dynamic case, the effect of the arch is 

experimentally almost not investigated. The 

main published works are of a theoretical nature. 

Conducted a series of experimental studies to 
assess the distribution and effects of arches, 

found that the pressure acting on the length of 

the rate does not depend on the structure of the 
distribution of stress in a layer of soil located 

above its surface at a distance of two or three of 

its width results from one of the experiments 
presented in Fig. 8. the vertical component of 

the pressure, v depth Z = H without effect of 

strength (ie hydrostatic load) was vh. As can be 
seen from the figure, for a layer of soil thick in 

Z<0,4(Zb>2s) on the stress distribution diagram, 
there is no decrease in the vertical component 

due to the absence of a lasting effect. But with Z 

= H, i.e. in the area of the soil located outside 
the mediocre proximity to the rectangular insert, 

v is not less than 10% vh. 

ON SOME PROBLEMS OF DYNAMIC ARCH 

ARCHES OF BURIED UNDERGROUND 

STRUCTURES.  

In the static theory of underground structures, 

the effect of archedness more or less, was 
experimentally investigated in [13]. In the 

dynamic case, the arch effect is almost not 

investigated by experimental means. 

 The main published works are of a theoretical 

nature. In [14], we present a number of 

experimental results, studies with the aim of 
estimating the distribution and effects of 

parchedness. It was found that the pressure 

acting on the length of the bet does not depend 

on the structure of the distribution of stress in a 
layer of soil located above its surface for a 

distance of two or three of its width. Solving the 

equilibrium equations for the distribution of the 
vertical component of the pressure forces per 

unit length of the section, we obtain: 

]1[
2

)/2( )/2()/(2 




 tgbzktgbzk

r

v
rr qee

tgk

bcb 





 

Where - angle of internal friction; с-angle of 

cohesion of soil; b- geometrically parameter;  - 

constant parameter (0<<1), kr-empirical 
coefficient. 

For soil type dry sand, which does not have the 
forces of adhesion (c = 0), the vertical 

component of the pressure vw on the elastic 
strip for the section at a large depth of the soil 

approaches its maximum value. At a thickness 

of a ground more 2,5b ,  vw=by/(2k,tg) mixing 
of the rectangular insert does not affect the 

structure of the voltage distribution for a given 
depth of soil. Until now, the phenomenon of 

archedness, which arise when loads acting on 

the upper surface of an elastic structure, has 
been considered. With the dynamic calculation 

of the arched appearance, different degrees of 

dependence on the wavelength and the 

properties of the soil, the existence of an arched 
phenomenon for bodies in a half-space is 

numerically determined. The analysis of 

numerical results (Fig. 2) will estimate, to the 
phenomenon of arcs, the following inequalities 

0

/)5,0( Ze
D

Z b  
                                 

(22) 

Where Z0 – the value of the arched effect in the 
static problem; D is the geometric parameter 

(internal surface diameter), - wavelength. 

Expression (22) is the ratio of the dynamic 

arctic effect of "Safarov". If relations (22) are 

satisfied in the calculation of subterranean 
constructions, methods for calculating the deep 

foundation of structures are applied. Thus, the 

following conclusions are drawn: 

 On the basis of the variational method 

(MCE), the stress-strain state of a cylindrical 

layer (aperture) under the action of harmonic 

waves was investigated. It is established that 
the maximum concentration of stress is 

allowed for long waves. The effects of 



Vibrations of an Elastic Half-Space Containing A Pedagree With Account of Internal and Wave 

Dissipation of the Oscillation Energy 

10                        International Journal of Emerging Engineering Research and Technology V6 ● I9 ● 2018 

dispersion become dominant as the 

wavelength decreases; 

 The arch effect is established under the 

dynamic influence of underground structures.  
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