

Eluozo, S.N¹ and Amadi-Oparaeli, K.I²

¹Department of Civil Engineering, College of Engineering, Gregory University Uturu (GUU), Abia State of Nigeria ²Department of Civil Engineering, Faculty of Engineering, Rivers State University, Nkpolu, Oroworukwo, Port Harcourt

*Corresponding Author: Eluozo, S.N, Department of Civil Engineering, College of Engineering, Gregory University Uturu (GUU), Abia State of Nigeria, Email: ndusolo2018@gmail.com

ABSTRACT

The behaviour granite on development of flexural strength of self-compacting concrete were observed applying predictive models, the study express the application of granite with Metakaolin replacement on the growth rate of flexural strength of concrete, the developed model through simulation generated flexural strength under the influence of Metakaolin content at different curing age, this study were monitored numerically to the optimum curing age of ninety days, numerical growth rate of flexural strength were observed at different mixed designs, this also includes variation influence from water powder ratios, the study generated linear trend to the optimum curing age, variation of flexural strength were experienced from different table thus observed from different graphical representation, the developed model simulation values were subjected to validation, and both parameters developed best fits correlation, the behaviour of Metakaolin replacement has expressed every effect from the mix design application on the concrete, this will definitely express the performance of self-compacting concrete for high impose loads.

Keywords: Modeling Flexural Strength Coarse Aggregate and Granite

INTRODUCTION

Flexural strength, or bend strength, is defined as a material's ability to resist deformation under load. The flexural strength represents the highest stress experienced within the material at its moment of rupture. It is measured in terms of stress (Jaja el al 2019). A concrete that has the ability of self-consolidating, that is, able to occupy the entire space in a form without the application of any external effort (such as mechanical vibration, floating, poking etc.) is known as self-compacting concrete (Tande &Mohite, 2007ode and Eluozo 2016a;ode and Eluozo 2016b; Jaja et al 2019). Based on the fact that concrete is a composition of materials consisting of different specific gravities, it is challenging for its constituents to be kept in a cohesive form. This challenge can be solved by addition of more quantity of finer material (lesser than 100 microns) in unit content of concrete and the use of super-plasticizers (Bapatet al, 2004). No single method has been found until date, which characterizes all the relevant workability aspects, and hence, each mix has been tested by more than one test method for the different workability parameters (Aggarwal *et al*, 2008ode and Eluozo 2016; Jaja et al 2019). Kayode&Ilesanmi (2013) prospects of corn-cob ash (CCA) as effective constituent in self-compacting concrete. The structural value of the composite was evaluated with consideration for its suitability as self-compacting concrete. Polypropylene strands were utilized as a part of reused self-compacting concrete (RSCC) to enhance the fresh and hardened properties of this sort of concrete. Ovri&Umukoro (2015) investigated the compressive and flexural strengths of concrete using rice husk ash (RHA) as partial replacement for cement.

Okamura & Ozawa (1995) proposed a rational mix design method in which the coarse and fine aggregates contents of the mix are fixed so that self-compatibility is achieved by adjusting the water-powder ratio and super plasticizer dosage onlyode and Eluozo 2016c;ode and Eluozo 2016d; (Edamatsu *et al* (2003Jaja et al2019) proposed a customary blend plan strategy for self-compacting concrete based on enhancing Okamura's technique by joining the strategies for fixing fine aggregate ratio, volumetric water-

powder proportion and super plasticizer measurements. EFNARC (2002) also proposed an empirical mix design method which is an improvement of the method proposed by Okamura and Ozawa (1995). Saaket al (2001) proposed a state of the art segregationcontrolled design method for self-compacting concrete. Their method was based on the theory that aggregate segregation is controlled by the viscosity, density and yield stress of the cement paste matrix Aggarwal et al (2008) proposed an experimental procedure for the design of selfcompacting concrete by ensuring deformability and stability in their work self-compacting concrete - procedure for mix design

THEORETICAL BACKGROUND

$$\frac{d c_d}{dx} + V(y)c_d = \Phi(y)c_d^n \tag{1.0}$$

Dividing equation (1.0) all through by c_d^n we have

$$c_d^{-n}\frac{d_{c_d}}{dx} + v(x)c_d^{1-n} = \Phi(y)$$
(1.1)

Let

$$\mathbf{P} = c_d^{1-n} \tag{1.2}$$

$$\frac{dp}{dy} = (1-n)c_d^{-n}\frac{dc_d}{dy}$$
$$c_d^{-n}\frac{dc_d}{dy} = \frac{1}{1-n}\frac{dp}{dy}$$
(1.3)

Substituting equation (1.2) and (1.3) into equation (1.1) we have that

$$\frac{1}{1-n}\frac{dp}{dx} + V(y)p = \Phi(y)$$
(1.4)

Integrating both sides we have

$$\int d[e^{V(y)(1-n)y}p] = \Phi(y)(1 - n)\int e^{V(y)(1-n)y}dy$$

$$p = \frac{\Phi(y)}{Vu(y)} + Ae^{-Vu(y)(1-n)y}$$
(1.5)

Substituting equation (1.2) into equation (1.13) we have

$$c_d^{1-n} = \frac{\Phi(y)}{Vu(y)} + Ae^{-Vu(y)(1-n)y}$$
(1.6)

MATERIAL AND METHOD

Flexural and Tensile Strength

Concrete has relatively high compressive strength in the range of 10 to 50 Nmm² and 60 to 120 Nmm² for high strength concrete. Tensile strength significantly low constitutes about 10% of the compressive strength (Neville & Brooks, 1996; Popovics, 1998).

Flexural test is done to find out the tensile strength of concrete. A typical set up recommended by British Standard is illustrated in Figure 2.2.

Figure 2.2. Flexural Beam Test Set-ups

From Mechanics of Materials and analysis of Figure 2.2, maximum tensile stress is expected to occur at the bottom of the constant moment region within which pure bending occurs. The modulus of rapture can be calculated as:

$$f_{ib} = \frac{FL}{bd^2}$$
 2.1

Where L =Span of specimen beam

F = maximum applied loads

b = breadth of beam

d = depth of beam

Other method used in determining the tensile strength of concrete is the indirect tension test (split cylinder test or Brazilian test, Figure 2.3) BS 1881: Part 117:1983 and ASTM C496-71. As recommended in these standards, the splitting test is done by applying compression loads at a loading rate 0.0112 to 0.0231 MPa/s along two axial lines that are diametrically opposite on a specimen 150 x 300 mm cylinder.

Figure 2.3. Tensile splitting Analysis

The splitting tensile strength is calculated using the stated formula

$$F_{st} = \frac{2P}{\pi LD}$$
 2.2

Where L = Length of Cylinder

P = Maximum applied loads

D = Diameter of Cylinder

RESULTS AND DISCUSSION

Table1. Predictive and Experimental Value	es of Flexural Streng	gth at Different Cu	ring Age
---	-----------------------	---------------------	----------

Curing Age	Predictive Values on Flexure	Experimental Values on Flexure
	Strength Concrete	Strength Concrete
7	0.336	0.346
8	0.384	0.374
9	0.432	0.452
10	0.48	0.474
11	0.528	0.548
12	0.576	0.566
13	0.624	0.644
14	0.672	0.672
15	0.72	0.747
16	0.768	0.778
17	0.816	0.846
18	0.864	0.865
19	0.912	0.952
20	0.96	0.945
21	1.008	1.038
22	1.056	1.066
23	1.104	1.105
24	1.152	1.162
25	1.2	1.243
20	1.248	1.258
27	1.290	1.280
20	1.344	1.534
30	1.392	1.572
31	1.44	1.445
32	1.400	1.400
33	1.550	1.550
34	1.504	1.504
35	1.68	1.632
36	1 728	1 728
37	1.776	1.776
38	1.824	1.824
39	1.872	1.872
40	1.92	1.926
41	1.968	1.968
42	2.016	2.016
43	2.064	2.064
44	2.112	2.132
45	2.16	2.264
46	2.208	2.238
47	2.256	2.256
48	2.304	2.304
49	2.352	2.352
50	2.4	2.443
51	2.448	2.458
52	2.496	2.466
53	2.544	2.554
54	2.592	2.562
55	2.64	2.643
56	2.688	2.688
57	2.736	2.736
58	2.784	2.784
59	2.832	2.832
60	2.88	2.886

61	2.928	2.928
62	2.976	2.976
63	3.024	3.054
64	3.072	3.082
65	3.12	3.126
66	3.168	3.158
67	3.216	3.226
68	3.264	3.244
69	3.312	3.272
70	3.36	3.363
71	3.408	3.418
72	3.456	3.456
73	3.504	3.504
74	3.552	3.552
75	3.6	3.634
76	3.648	3.658
77	3.696	3.696
78	3.744	3.744
79	3.792	3.792
80	3.84	3.844
81	3.888	3.888
82	3.936	3.936
83	3.984	3.984
84	4.032	4.032
85	4.08	4.082
86	4.128	4.128
87	4.176	4.176
88	4.224	4.224
89	4.272	4.262
90	4.32	4.324

 Table2. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Curing Age	Predictive Values on Flexure Strength Concrete	Experimental Values on Flexure Strength of Concrete
7	0.1183	0.228172
8	0.1352	0.260768
9	0.1521	0.293364
10	0.169	0.32596
11	0.1859	0.358556
12	0.2028	0.391152
13	0.2197	0.423748
14	0.2366	0.456344
15	0.2535	0.48894
16	0.2704	0.521536
17	0.2873	0.554132
18	0.3042	0.586728
19	0.3211	0.619324
20	0.338	0.65192
21	0.3549	0.684516
22	0.3718	0.717112
23	0.3887	0.749708
24	0.4056	0.782304
25	0.4225	0.8149
26	0.4394	0.847496
27	0.4563	0.880092
28	0.4732	0.912688
29	0.4901	0.945284
30	0.507	0.97788
31	0.5239	1.010476

32	0.5408	1.043072
33	0.5577	1.075668
34	0.5746	1.108264
35	0.5915	1.14086
36	0.6084	1.173456
37	0.6253	1.206052
38	0.6422	1.238648
39	0.6591	1.271244
40	0.676	1.30384
41	0.6929	1.336436
42	0.7098	1.369032
43	0.7267	1.401628
44	0.7436	1.434224
45	0.7605	1.46682
46	0 7774	1 499416
47	0 7943	1 532012
48	0.8112	1 564608
49	0.8281	1 597204
50	0.845	1.577204
51	0.8619	1 662396
52	0.8788	1 60/002
53	0.8057	1 777588
53	0.0007	1.727588
55	0.9120	1.700184
55	0.9293	1.79278
57	0.9404	1.823370
59	0.9033	1.65/9/2
50	0.9802	1.022164
59	0.9971	1.923164
60	1.014	1.955/6
61	1.0309	1.988330
62	1.0478	2.020952
03	1.0047	2.035346
64	1.0816	2.080144
65	1.0985	2.118/4
00	1.1134	2.131350
0/	1.1323	2.165952
68	1.1492	2.210528
69	1.1001	2.249124
/0	1.183	2.28172
/1	1.1999	2.314316
12	1.2168	2.346912
73	1.2337	2.379508
74	1.2506	2.412104
15	1.2675	2.4447
76	1.2844	2.477296
77	1.3013	2.509892
78	1.3182	2.542488
79	1.3351	2.575084
80	1.352	2.60768
81	1.3689	2.640276
82	1.3858	2.672872
83	1.4027	2.705468
84	1.4196	2.738064
85	1.4365	2.77066
86	1.4534	2.803256
87	1.4703	2.835852
88	1.4872	2.868448
89	1.5041	2.901044
90	1.521	2.93364

	Predictive Values of Flexure of	Experimental Values on Flexure	
Curing Age	Concrete Strength	Strength of Concrete	
7	0.74578	0.574	
8	0.85232	0.656	
9	0.95886	0.738	
10	1.0654	0.82	
11	1.17194	0.902	
12	1.27848	0.984	
13	1.38502	1.066	
14	1.49156	1.148	
15	1.5981	1.23	
16	1.70464	1.312	
17	1.81118	1.394	
18	1.91772	1.476	
19	2.02426	1.558	
20	2.1308	1.64	
21	2.23734	1.722	
22	2.34388	1.804	
23	2.45042	1.886	
24	2.55696	1.968	
25	2.6635	2.05	
26	2.77004	2.132	
27	2.87658	2.214	
28	2.98312	2.296	
29	3.08966	2.378	
30	3.1962	2.46	
31	3.30274	2.542	
32	3.40928	2.624	
33	3.51582	2.706	
34	3.62236	2.788	
35	3.7289	2.87	
36	3.83544	2.952	
37	3.94198	3.034	
38	4.04852	3.116	
39	4.15506	3.198	
40	4.2616	3.28	
41	4.36814	3.362	
42	4.47468	3.444	

Table3. Predictive and Experimental	Values of Flexural	Strength at Different	Curing Age

Table4. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Curing Age	Predictive Values of Flexure of Concrete Strength	Experimental Values on Flexure Strength of Concrete
7	0.539	0.6615
8	0.616	0.756
9	0.693	0.8505
10	0.77	0.945
11	0.847	1.0395
12	0.924	1.134
13	1.001	1.2285
14	1.078	1.323
15	1.155	1.4175
16	1.232	1.512
17	1.309	1.6065
18	1.386	1.701
19	1.463	1.7955
20	1.54	1.89
21	1.617	1.9845

22	1.694	2.079
23	1.771	2.1735
24	1.848	2.268
25	1.925	2.3625
26	2.002	2.457
27	2.079	2.5515
28	2.156	2.646
29	2.233	2.7405
30	2.31	2.835
31	2.387	2.9295
32	2.464	3.024
33	2.541	3.1185
34	2.618	3.213
35	2.695	3 3075
36	2.055	3 402
37	2.849	3 4965
38	2.015	3 591
39	3 003	3 6855
40	3.08	3.78
41	3.00	3.76
42	3.137	3.060
42	3.234	4.0635
43	3.311	4.0033
44	3.588	4.138
45	3.405	4.2323
40	3.542	4.547
47	3.606	4.4415
40	3.090	4.550
50	3.85	4.0303
51	3.65	4.725
52	4 004	4.0175
53	4.004	5.0085
54	4 158	5.0005
55	4 235	5 1975
56	4 312	5.1975
57	4 389	5 3865
58	4 466	5 481
59	4 543	5 5755
60	4 62	5.67
61	4 697	5 7645
62	4 774	5 859
63	4.851	5.9535
64	4.928	6.048
65	5.005	6.1425
66	5.082	6.237
67	5.159	6.3315
68	5.236	6.426
69	5.313	6.5205
70	5.39	6.615
71	5.467	6.7095
72	5.544	6.804
73	5.621	6.8985
74	5.698	6.993
75	5.775	7.0875
76	5.852	7.182
77	5.929	7.2765
78	6.006	7.371
79	6.083	7.4655
80	6.16	7.56

81	6.237	7.6545
82	6.314	7.749
83	6.391	7.8435
84	6.468	7.938
85	6.545	8.0325
86	6.622	8.127
87	6.699	8.2215
88	6.776	8.316
89	6.853	8.4105
90	6.93	8.505

Table5. Predictive and Ex	cperimental Values o	of Flexural Strength	at Different	Curing Age
		<i>j</i> =		

	Predictive Values of Flexure of	Experimental Values on Flexure
Curing Age	Concrete Strength	Strength of Concrete
7	0.04639404	0.046347
8	0.05302176	0.052968
9	0.05964948	0.059589
10	0.0662772	0.06621
11	0.07290492	0.072831
12	0.07953264	0.079452
13	0.08616036	0.086073
14	0.09278808	0.092694
15	0.0994158	0.099315
16	0.10604352	0.105936
17	0.11267124	0.112557
18	0.11929896	0.119178
19	0.12592668	0.125799
20	0.1325544	0.13242
21	0.13918212	0.139041
22	0.14580984	0.145662
23	0.15243756	0.152283
24	0.15906528	0.158904
25	0.165693	0.165525
26	0.17232072	0.172146
27	0.17894844	0.178767
28	0.18557616	0.185388
29	0.19220388	0.192009
30	0.1988316	0.19863
31	0.20545932	0.205251
32	0.21208704	0.211872
33	0.21871476	0.218493
34	0.22534248	0.225114
35	0.2319702	0.231735
36	0.23859792	0.238356
37	0.24522564	0.244977
38	0.25185336	0.251598
39	0.25848108	0.258219
40	0.2651088	0.26484
41	0.27173652	0.271461
42	0.27836424	0.278082
43	0.28499196	0.284703
44	0.29161968	0.291324
45	0.2982474	0.297945
46	0.30487512	0.304566
47	0.31150284	0.311187
48	0.31813056	0.317808
49	0.32475828	0.324429
50	0.331386	0.33105
51	0.33801372	0.337671

52	0.34464144	0.344292
53	0.35126916	0.350913
54	0.35789688	0.357534
55	0.3645246	0.364155
56	0.37115232	0.370776
57	0.37778004	0.377397
58	0.38440776	0.384018
59	0.39103548	0.390639
60	0.3976632	0.39726
61	0.40429092	0.403881
62	0.41091864	0.410502
63	0.41754636	0.417123
64	0.42417408	0.423744
65	0.4308018	0.430365
66	0.43742952	0.436986
67	0.44405724	0.443607
68	0.45068496	0.450228
69	0.45731268	0.456849
70	0.4639404	0.46347
71	0.47056812	0.470091
72	0.47719584	0.476712
73	0.48382356	0.483333
74	0.49045128	0.489954
75	0.497079	0.496575
76	0.50370672	0.503196
77	0.51033444	0.509817
78	0.51696216	0.516438
79	0.52358988	0.523059
80	0.5302176	0.52968
81	0.53684532	0.536301
82	0.54347304	0.542922
83	0.55010076	0.549543
84	0.55672848	0.556164
85	0.5633562	0.562785
86	0.56998392	0.569406
87	0.57661164	0.576027
88	0.58323936	0.582648
89	0.58986708	0.589269
90	0.5964948	0.59589

Table6. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Curing Age	Predictive Values of Flexure of	Experimental Values on Flexure
	Concrete Strength	Strength Concrete
7	0.346407	0.356
8	0.394408	0.364
9	0.442409	0.462
10	0.49041	0.474
11	0.538411	0.558
12	0.586412	0.566
13	0.634413	0.654
14	0.682414	0.675
15	0.730415	0.767
16	0.778416	0.778
17	0.826417	0.856
18	0.874418	0.865
19	0.922419	0.932
20	0.97042	0.941
21	1.018421	1.034
22	1.066422	1.067

23	1.114423	1.105
24	1.162424	1.164
25	1.210425	1.255
26	1.258426	1.258
27	1.306427	1.266
28	1.354428	1.354
29	1 402429	1 372
30	1 45043	1 455
31	1 /08/31	1.455
22	1.576432	1.556
32	1.540432	1.550
24	1.574455	1.504
25	1.042434	1.032
35	1.090435	1.004
36	1./38436	1.748
37	1.786437	1.756
38	1.834438	1.854
39	1.882439	1.872
40	1.93044	1.956
41	1.978441	1.968
42	2.026442	2.026
43	2.074443	2.065
44	2.122444	2.134
45	2.170445	2.265
46	2.218446	2.236
47	2.266447	2.256
48	2.314448	2.304
49	2.362449	2.352
50	2.41045	2.443
51	2 458451	2 458
52	2.100101	2.150
53	2.500452	2.50
53	2.554455	2.554
55	2.650/255	2.502
55	2.030435	2.043
57	2.098430	2.088
51	2.740437	2.750
58	2.794438	2.784
59	2.842459	2.832
60	2.89046	2.886
61	2.938461	2.928
62	2.986462	2.976
63	3.034463	3.054
64	3.082464	3.082
65	3.130465	3.126
66	3.178466	3.158
67	3.226467	3.226
68	3.274468	3.244
69	3.322469	3.272
70	3.37047	3.363
71	3.418471	3.418
72	3.466472	3.456
73	3.514473	3.504
74	3.562474	3.552
75	3.610475	3.634
76	3.658476	3.658
77	3 706477	3 696
78	3 754478	3 744
70	3.13++70	3.797
80	3.850/2477	3.172
00	2 000 40 1	2 000
01	3.090401	5.000

82	3.946482	3.936
83	3.994483	3.984
84	4.042484	4.032
85	4.090485	4.082
86	4.138486	4.128
87	4.186487	4.176
88	4.234488	4.224
89	4.282489	4.262
90	4.33049	4.324

Curing Age	Predictive Values of Flexure of	Experimental Values on Flexure
	Concrete Strength	Strength Concrete
7	0.1911	0.15435
8	0.2184	0.1764
9	0.2457	0.19845
10	0.273	0.2205
11	0.3003	0.24255
12	0.3276	0.2646
13	0.3549	0.28665
14	0.3822	0.3087
15	0.4095	0.33075
16	0.4368	0.3528
17	0.4641	0.37485
18	0.4914	0.3969
19	0.5187	0.41895
20	0.546	0.441
21	0.5733	0.46305
22	0.6006	0.4851
23	0.6279	0.50715
24	0.6552	0.5292
25	0.6825	0.55125
26	0.7098	0.5733
27	0.7371	0.59535
28	0.7644	0.6174
29	0.7917	0.63945
30	0.819	0.6615
31	0.8463	0.68355
32	0.8736	0.7056
33	0.9009	0.72765
34	0.9282	0.7497
35	0.9555	0.77175
36	0.9828	0.7938
37	1.0101	0.81585
38	1.0374	0.8379
39	1.0647	0.85995
40	1.092	0.882
41	1.1193	0.90405
42	1.1466	0.9261
43	1.1739	0.94815
44	1.2012	0.9702
45	1.2285	0.99225
46	1.2558	1.0143
47	1.2831	1.03635
48	1.3104	1.0584
49	1.3377	1.08045
50	1.365	1.1025
51	1.3923	1.12455
52	1.4196	1.1466

53	1.4469	1.16865
54	1.4742	1.1907
55	1.5015	1.21275
56	1.5288	1.2348
57	1.5561	1.25685
58	1.5834	1.2789
59	1.6107	1.30095
60	1.638	1.323
61	1.6653	1.34505
62	1.6926	1.3671
63	1.7199	1.38915
64	1.7472	1.4112
65	1.7745	1.43325
66	1.8018	1.4553
67	1.8291	1.47735
68	1.8564	1.4994
69	1.8837	1.52145
70	1.911	1.5435
71	1.9383	1.56555
72	1.9656	1.5876
73	1.9929	1.60965
74	2.0202	1.6317
75	2.0475	1.65375
76	2.0748	1.6758
77	2.1021	1.69785
78	2.1294	1.7199
79	2.1567	1.74195
80	2.184	1.764
81	2.2113	1.78605
82	2.2386	1.8081
83	2.2659	1.83015
84	2.2932	1.8522
85	2.3205	1.87425
86	2.3478	1.8963
87	2.3751	1.91835
88	2.4024	1.9404
89	2.4297	1.96245
90	2.457	1.9845

 Table8. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Curing Age	Predictive Values of Flexure of	Experimental Values on Flexure
Cui ing Age	Concrete Strength	Strength Concrete
7	0.30345	0.26565
8	0.3468	0.3036
9	0.39015	0.34155
10	0.4335	0.3795
11	0.47685	0.41745
12	0.5202	0.4554
13	0.56355	0.49335
14	0.6069	0.5313
15	0.65025	0.56925
16	0.6936	0.6072
17	0.73695	0.64515
18	0.7803	0.6831
19	0.82365	0.72105
20	0.867	0.759
21	0.91035	0.79695
22	0.9537	0.8349
23	0.99705	0.87285

24 1.0404 0.9108 25 1.08375 0.94875 26 1.1271 0.9867 27 1.17045 1.02465 28 1.2138 1.0626 29 1.25715 1.10055 30 1.3005 1.1385 31 1.34385 1.17645 32 1.2144 1.3872 33 1.43055 1.25235 1.2903 34 1.4739 35 1.51725 1.32825 36 1.5606 1.3662 37 1.60395 1.40415 38 1.6473 1.4421 39 1.48005 1.69065 40 1.734 1.518 41 1.77735 1.55595 42 1.5939 1.8207 43 1.63185 1.86405 44 1.9074 1.6698 45 1.95075 1.70775 1.7457 46 1.9941 47 2.03745 1.78365 48 2.0808 1.8216 49 2.12415 1.85955 50 2.1675 1.8975 51 2.21085 1.93545 52 2.2542 1.9734 53 2.29755 2.01135 54 2.3409 2.0493 2.38425 55 2.08725 56 2.4276 2.1252 57 2.47095 2.16315 58 2.5143 2.2011 59 2.55765 2.23905 60 2.277 2.601 61 2.64435 2.31495 62 2.6877 2.3529 63 2.73105 2.39085 2.4288 64 2.7744 65 2.81775 2.46675 2.8611 2.5047 66 67 2.90445 2.54265 2.9478 2.5806 68 69 2.99115 2.61855 70 3.0345 2.6565 71 3.07785 2.69445 72 2.7324 3.1212 73 3.16455 2.77035 74 3.2079 2.8083 75 3.25125 2.84625 76 3.2946 2.8842 3.33795 77 2.92215 2.9601 78 3.3813 79 3.42465 2.99805 80 3.468 3.036 81 3.51135 3.07395 82 3.5547 3.1119

83	3.59805	3.14985
84	3.6414	3.1878
85	3.68475	3.22575
86	3.7281	3.2637
87	3.77145	3.30165
88	3.8148	3.3396
89	3.85815	3.37755
90	3.9015	3.4155

Table9. Predictive and Experimental	Values of Flexura	l Strength at Different	Curing Age
-------------------------------------	-------------------	-------------------------	------------

Curing Age	Predictive Values of Flexure of	Experimental Values on Flexure
	Concrete Strength	Strength Concrete
7	0.4585	0.38031
8	0.524	0.43464
9	0.5895	0.48897
10	0.655	0.5433
11	0.7205	0.59763
12	0.786	0.65196
13	0.8515	0.70629
14	0.917	0.76062
15	0.9825	0.81495
16	1.048	0.86928
17	1.1135	0.92361
18	1.179	0.97794
19	1.2445	1.03227
20	1.31	1.0866
21	1.3755	1.14093
22	1.441	1.19526
23	1.5065	1.24959
24	1.572	1.30392
25	1.6375	1.35825
26	1.703	1.41258
27	1.7685	1.46691
28	1.834	1.52124
29	1.8995	1.57557
30	1.965	1.6299
31	2.0305	1.68423
32	2.096	1.73856
33	2.1615	1.79289
34	2.227	1.84722
35	2.2925	1.90155
36	2.358	1.95588
37	2.4235	2.01021
38	2.489	2.06454
39	2.5545	2.11887
40	2.62	2.1732
41	2.6855	2.22753
42	2.751	2.28186
43	2.8165	2.33619
44	2.882	2.39052
45	2.9475	2.44485
46	3.013	2.49918
47	3.0785	2.55351
48	3.144	2.60784
49	3.2095	2.66217
50	3.275	2.7165
51	3.3405	2.77083
52	3.406	2.82516
53	3.4715	2.87949

54	3.537	2.93382
55	3.6025	2.98815
56	3.668	3.04248
57	3.7335	3.09681
58	3.799	3.15114
59	3.8645	3.20547
60	3.93	3.2598
61	3.9955	3.31413
62	4.061	3.36846
63	4.1265	3.42279
64	4.192	3.47712
65	4.2575	3.53145
66	4.323	3.58578
67	4.3885	3.64011
68	4.454	3.69444
69	4.5195	3.74877
70	4.585	3.8031
71	4.6505	3.85743
72	4.716	3.91176
73	4.7815	3.96609
74	4.847	4.02042
75	4.9125	4.07475
76	4.978	4.12908
77	5.0435	4.18341
78	5.109	4.23774
79	5.1745	4.29207
80	5.24	4.3464
81	5.3055	4.40073
82	5.371	4.45506
83	5.4365	4.50939
84	5.502	4.56372
85	5.5675	4.61805
86	5.633	4.67238
87	5.6985	4.72671
88	5.764	4.78104
89	5.8295	4.83537
90	5.895	4.8897

Figure 1. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Figure 2. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Figure 3. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Figure 4. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Figure 5. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Figure6. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Figure 7. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Figure8. Predictive and Experimental Values of Flexural Strength at Different Curing Age

Figure9. Predictive and Experimental Values of Flexural Strength at Different Curing Age

The flexural strength represents the highest stress experienced within the material at its moment of yield. Figures one to nine express the behaviour of the materials from different application, these materials such as granite developed different values at various condition, the figure developed various rate of flexural condition in linear trend observed at various conditions, these are based on the influence from granite, the growth rate stated express the variation of granite effect on the flexural strength of concrete. Flexural stress, on the other hand, exerts both tensile and compressive force upon an object. Whereas, when the extreme fibers generate its defective, then tensile strength is lower than the flexural strength. Flexural Strength are very important because its Calculation is considered very crucial in structural mechanics, this condition make it imperative to express it growth rate of concrete structure, the predictive values at different mix development generated variation of parameters, but maintained linear trend to the optimum level recorded at ninety days of curing age, the experimental data for model validation developed linear fit, this condition observed express better fits correlation.

CONCLUSION

The study monitored flexural strength of concrete at different curing age to the optimum values recorded at ninety days, the behaviour of concrete under nonhomogeneous system express its flexural rate of growth base on the influenced from it mechanical properties, these are based

on the rate of cement replacement, the dosage of Metakaolin content as a partial replacement were observed from the flexural condition through the simulation result generated, since Flexural strength that is also defined as modulus of rupture, or can be called bend strength, in otherworld's transverse rupture strength of a material property has been observed that it is the stress in a material just before it yields in a flexure test. Nevertheless, the flexural strength represents the highest stress experienced within the material at its moment of vield. The study of flexural strength from granite generated its level flexure based on the mix designed applied to generate other concretes properties, these are for strength development through the application of Metakaolin content, the influence from variations of flexural condition of the material generated this express results, the derived mathematical model were applied to model the behaviour of concrete flexural strength, the derived model were validated with experimental values, and both parameters developed a better fits correlation.

REFERENCES

- Aggarwal, P., Siddique, R., Aggarwal, Y. & Gupta, S. M. (2008). Self-Compacting Concrete – Procedure for Mix Design, *Leonardo Electronic Journal of Practices and Technologies*, 12, 15-24
- [2] Aydin, A. C. (2007). Self Compactability of High Volume Hybrid Fiber Reinforced Concrete. *Construction and Building Materials*, Elsevier, 21(6), 1149-1154
- [3] Elinwa, A. U. & Mamuda, A. M. (2014). Sawdust Ash as Powder Material for Self-Compacting Concrete Containing Naphthalene Sulfonate, *Journal of Advances in Civil Engineering*, 14(1), 2-10.
- [4] Elinwa, A. U., Mamuda, M. & Ahmed, M. (2014). Mechanical Strengths of Self-Compacting Concrete Containing Sawdust-Ash and Naphthalene Sulfonate, *Journal of Advances in Civil Engineering*, 2(4), 300-309
- [5] Edamatsu, Y., Sugamata, T. & Ouchi, M. (2003). A Mix-Design Method for Self-Compacting Concrete Based On Mortar Flow and Funnel Tests, *Conference Proceedings, International RILEM Symposium on Self-Compacting Concrete*, RILEM Publications SARL, (pp. 345 – 354).Retrieved from
- [6] Kayode, O. & Ilesanmi O. (2013). Strength Evaluation of Corn-Cob Ash in a Blended Portland Cement, American Scientific Research Journal for Engineering, Technology, and Sciences, 4(1), 851-875.

- [7] Mahmoud, A., Mounir, M. K., Mohamed, A. S. & Zeinab, A. E. (2013).Effect of Polypropylene Fibers on Development of Fresh and Hardened Properties of Recycled Self-Compacting Concrete, *International Journal of Engineering and Advanced Technology*, 2(5), 999-1002. Retrieved from http://www.ijeat.org/v2i5.php. March, 11th 2016.
- [8] Okamura, H., Ouchi, H. & Masahiro, O. (2003). Self-Compacting Concrete. *Journal of Advanced Concrete Technology*, 1(1), 5-15. Retrieved from www.kutarr.lib.kochi-tech.ac.jp. 14th August 2016
- [9] Okamura, H. & Ozawa, K. (1995). Mix-design for Self-Compacting Concrete, *Concrete Library of Japan Society of Civil Engineers*, 25, 107-120.
- [10] Ovri, J. E. O. &Umukoro, O. P. (2015). The Compressive and Flexural Strengths of Self-Compacting Concrete Using Rice Husk Ash, *International Journal of Advanced Materials Research*, 1(3), 80-85.
- [11] Tande, S. N. &Mohite, P. B. (2007). Applications of Self-Compacting Concrete, 32ndConference on OUR WORLD IN CONCRETE & STRUCTURES: 28 – 29 August 2007, CI-Premier PTE LTD, Singapore. Retrieved from http:// cipremier.com/100032055.14th August, 2016.
- [12] Ode .T. and Eluozo S.N. Predictive Model on Compressive Strength of Concrete Made with Locally 3/8 Gravel from Different Water Cement Ratios and Curing Age; *International Journal* of Scientific and Engineering Research, Volume 7, issue 1 January- 2016 pp1528-1551.
- [13] Ode .T. and Eluozo S.N. Model Prediction to Monitor the Rate of Water Absorption of Concrete Pressured by Variation of Time and Water Cement Ratios International Journal of Scientific and Engineering Research, Volume 7, issue 1 January- 2016 pp1514-1527
- [14] Ode .T. and Eluozo S.N. Calibrating the Density of Concrete from Washed and Unwashed Locally 3/8 Gravel Material at Various Curing Age International Journal of Scientific and Engineering Research, Volume 7, issue 1 January - 2016 pp1514-1552-15574
- [15] Ode .T. and Eluozo S.N; Compressive Strength Calibration of Washed and Unwashed Locally Occurring 3/8 Gravel from Various Water Cement Ratios and Curing Age; *International Journal Engineering and General Science Volume* 4 Issue 1, January-February,2016 pp462-483.
- [16] Ode .T. and Eluozo S.N; Predictive Model to Monitor Variation of Concrete Density Influenced by Various Grade from Locally 3/8 Gravel at Different Curing Time International Journal Engineering and General Science Volume 4 Issue 1, January-February,2016 pp502-522.

- [17] Ode .T. and Eluozo S.N; Predictive Model to Monitor Vitiation of Stress –Strain Relationship of 3/8 Gravel Concrete with Water Cement Ration [0.45] at Different Load International Journal Engineering and General Science Volume 4 Issue 1, January-February,2016 pp409-418.
- [18] Jaja, G. W. T, Eluozo, S.N, Ezeilo F.E Modeling and simulation of flexure strength of self-compacting concrete modified with fly ash and super plasticizer International Journal of Research in Engineering and Innovation Vol-3, Issue-1 (2019), 26-35 2019

Citation: Eluozo, S.N and Amadi-Oparaeli, K.I, "Modeling and Simulation of Flexure Strength of Self-Ompacting Concrete from Granite Modified with Metakaoline Substance", International Journal of Emerging Engineering Research and Technology, 7(9), 2019, pp. 19-38

Copyright: © 2019 Eluozo, S.N. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.