
 

International Journal of Emerging Engineering Research and Technology 

Volume 3, Issue 7, July 2015, PP 79-86 

ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) 

 

*Address for correspondence:  

jtinureddy@gmail.com 

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015               79 

Compact Implementation of SHA3-1024 on FPGA 

1
S.Bhargav, 

2
Dr. Drva Sharath Kumar 

1
ECE, Malla reddy College of Engineering and Technology, Hyderabad, India  

2
ECE, Malla reddy College of Engineering and Technology, Hyderabad, India  

 

ABSTRACT 

SHA3 algorithm had proposed by five people with five different approaches. In that NIST (National Institute of 

Standards and Technology) selected one approach .that approach proposed by Keccak .after that Keccak sha3 

algorithm using with memories but it will take more area  so in our paper we are designing  128 bit  Keccak  

sequential architecture .sha3 having different variants like sha224,sha256,sha512,sha1024.we are implementing 

sha1024 variant using Xilinx 13.2. 

Keywords: theta, rho, pi, chi, iota. 

 

INTRODUCTION 

MD5 is one in a series of message digest algorithms designed by Professor Ronald 

Rivest of MIT (Rivest, 1992). When analytic work indicated that MD5's predecessor MD4 was likely 

to be insecure, Rivest designed MD5 in 1991 as a secure replacement. (Hans Dobbertin did indeed 

later find weaknesses in MD4.)In 1993, Den Boer and Baseliners gave an early, although limited, 

result of finding a "pseudo-collision" of the MD5 compression function; that is, two 

different initialization vectors which produce an identical digest. In 1996, Dobbertin announced a 

collision of the compression function of MD5 (Dobbertin, 1996). While this was not an attack on the 

full MD5 hash function, it was close enough for cryptographers to recommend switching to a 

replacement, such as SHA-1 or RIPEMD-160.The size of the hash value (128 bits) is small enough to 

contemplate a birthday attack. MD5CRK was a distributed project started in March 2004 with the aim 

of demonstrating that MD5 is practically insecure by finding a collision using a birthday attack.  

SHA-1 produces a message digest based on principles similar to those used by Ronald L. 

Rivest of MIT in the design of theMD4 and MD5 message digest algorithms, but has a more 

conservative design. The original specification of the algorithm was published in 1993 under the 

title Secure Hash Standard, FIPS PUB 180, by U.S. government standards agency NIST (National 

Institute of Standards and Technology). This version is now often namedSHA-0. It was withdrawn by 

the NSA shortly after publication and was superseded by the revised version, published in 1995 in 

FIPS PUB 180-1 and commonly designated SHA-1. SHA-1 differs from SHA-0 only by a single 

bitwise rotation in the message schedule of its compression function; this was done, according to the 

NSA, to correct a flaw in the original algorithm which reduced its cryptographic security. However, 

the NSA did not provide any further explanation or identify the flaw that was corrected. Weaknesses 

have subsequently been reported in both SHA-0 and SHA-1. SHA-1 appears to provide greater 

resistance to attacks. SHA-2 is a set of cryptographic hash functions designed by the NSA 

https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/Message_digest
https://en.wikipedia.org/wiki/Ronald_Rivest
https://en.wikipedia.org/wiki/Ronald_Rivest
https://en.wikipedia.org/wiki/Ronald_Rivest
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/Hans_Dobbertin
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/RIPEMD-160
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/MD5CRK
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Message_digest
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function


S.Bhargav & Dr. Drva Sharath Kumar “Compact Implementation of SHA3-1024 on FPGA” 

80                International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 

(U.S. National Security Agency).[3] SHA stands for Secure Hash Algorithm. Cryptographic hash 

functions are mathematical operations run on digital data; by comparing the computed "hash" (the 

output from execution of the algorithm) to a known and expected hash value, a person can determine 

the data's integrity. For example, computing the hash of a downloaded file and comparing the result to 

a previously published hash result can show whether the download has been modified or tampered 

with.[4] A key aspect of cryptographic hash functions is their collision resistance: nobody should be 

able to find two different input values that result in the same hash output.SHA-2 includes significant 

changes from its predecessor, SHA-1. The SHA-2 family consists of six hash functions 

with digests (hash values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-

512, SHA-512/224, SHA-512/256.SHA-256 and SHA-512 are novel hash functions computed with 

32-bit and 64-bit words, respectively. They use different shift amounts and additive constants, but 

their structures are otherwise virtually identical, differing only in the number of rounds. SHA-224 and 

SHA-384 are simply truncated versions of the first two, computed with different initial values. SHA-

512/224 and SHA-512/256 are also truncated versions of SHA-512, but the initial values are 

generated using the method described in FIPS PUB 180-4. SHA-2 was published in 2001 by 

the NIST as a U.S. federal standard (FIPS). The SHA-2 family of algorithms are patented in US 

6829355. The United has released the patent under a royalty-free license. In 2005, an algorithm 

emerged for finding SHA-1 collisions in about 2000-times fewer steps than was previously thought 

possible.[6]Although (as of 2015) no example of a SHA-1 collision has been published yet, the 

security margin left by SHA-1 is weaker than intended, and its use is therefore no longer 

recommended for applications that depend on collision resistance, such as digital signatures. Although 

SHA-2 bears some similarity to the SHA-1 algorithm, these attacks have not been successfully 

extended to SHA-2. In October 2012, the National Institute of Standards and Technology (NIST) 

chose the Keccak algorithm as the new SHA-3 standard. Keccak offers many benefits, such as 

performance and good resistance traits. In this article, I take a concise look at Keccak's workings. I 

examine its engine and see how it renders the message text into a hash. In addition, I compare Keccak 

against SHA-1 and SHA-2 using four standard tests. A notable problem with SHA-1 and SHA-2 is 

that they both use the same engine, called Merkle-Damgard, to process message text. This means that 

a successful attack on SHA-1 becomes a potential threat on SHA-2.Consider SHA-1 for instance. A 

brute force attack usually takes at least 280 rounds (a round is a single cycle of transformation of the 

interim hash value) to find a collision in a full-round SHA-1. But in February 2005, Xiaoyun Wang 

and colleagues used a differential path attack to break a full-round SHA-1, and it took only 269 cycles 

to succeed. That same attack was later corroborated by Martin Cochran in August 2008.In 2012, Mark 

Stevens used a series of cloud servers to perform a differential path attack on SHA-1. His attack 

produced a near-collision after 258.5 cycles. He also estimated a modified attack can manage a      

full-collision after 261 cycles. As to SHA-2, the only successful attacks were those against a limited 

round SHA-2 hash. The most effective attack was against a 46-round SHA-2 (512-bit variant) and 

against a 41-round SHA-2 (256-bit variant). It took 2253.6 cycles to break the 256-bit variant and 

2511.5 cycles for the 512-bit variant. The fact remains that, while no successful attacks against a   

full-round SHA-2 have been announced, there is no doubt that attack mechanisms are being 

developed in private. This is one reason why NIST sponsored the SHA-3 competition, which led to 

the development and recent adoption of Keccak. 

SHA3 

To be considered for the SHA-3 standard, candidate hash functions had  to meet four conditions set by 

NIST. If a candidate failed to meet these conditions, it was disqualified: The candidate hash function 

had to perform well regardless of implementation. It should expend minimal resources even when 

https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/SHA-2#cite_note-4
https://en.wikipedia.org/wiki/Collision_resistance
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
http://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US6829355
http://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US6829355
http://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US6829355
https://en.wikipedia.org/wiki/SHA-2#cite_note-6
https://en.wikipedia.org/wiki/Digital_signature


S.Bhargav & Dr. Drva Sharath Kumar “Compact Implementation of SHA3-1024 on FPGA” 

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015               81 

hashing large amounts of message text. Many proposed candidates were actually unable to meet this 

requirement. The candidate function had to be conservative about security. It should withstand known 

attacks, while maintaining a large safety factor. It should emit the same four hash sizes as SHA-2 

(224-, 256-, 384-, or 512-bits wide), but be able to supply longer hash sizes if need be. The candidate 

function had to be subjected to cryptanalysis. Both source code and analytical results were made 

public for interested third-parties to review and comment. Any weaknesses found during analysis 

were to be addressed, through tweaks or through redesign. The candidate function had to exercise 

code diversity. It could not use the Merkle-Damgard engine to produce the message hash. The SHA-3 

competition saw 51 candidate functions enter the first round of evaluations. Out of those, 14 managed 

to advance to the second round. Round three saw the candidates whittled down to five. And from 

those five, Keccak was declared the winner. Keccak is recognized as a new Secure Hash Algorithm-3 

i.e. SHA-3 [3] announced by NIST. Gilles Van Assche, Guido Bertoni, Michael Peeters and Joan 

Daemen designed and proposed the construction of Keccak Hash function. The Keccak-f permutation 

is the basic component of Keccak Hash function and supports 224-bit, 256-bit, 384-bit and 512-bit 

hash variants. It consists of number of rounds and each round is the combination of logical operations 

and bit permutations. Keccak is generated from sponge function with Keccak [r, c] members. It is 

categorized by these additional functions i.e bit rate (r) and capacity (c). The addition of r + c gives 

width of the Keccak function permutation and is it is further limited to values as indicated 25, 50, 100, 

200, 400, 800, 1600. The Keccak team introduced the Keccak [1600] function for SHA3 proposal 

with different values of ’r’ and ’c’. Keccak [1600] was selected because of its increased number of 

rounds in order to provide improved security margin. For 256-bit hash value r = 1088 and c = 512. For 

512-bit hash output, the values of r and c are 576 and 1024 respectively. The 1600-bit state matrix of 

Keccak composed of 5x5 matrixes of 64-bit words. Initially, the message block should undergo the 

inversion procedure so that last byte should come first and first byte should become last. Every single 

compression function of Keccak composed of 24 rounds and each round is sub-divided into five steps 

i.e. Theta (Θ), Rho (ρ) and Pi (π), Chi (χ), Iota (i) explained in below section 

Theta (Θ) Step 

Theta function comprises of three equations that involves simple XOR and bitwise cyclic shift 

operations. Equation (1) involves the XOR operation between lanes (set composed of 64-bits along 

the constant x and y co-ordinates) of each row of the state matrix A that results in five output lanes. 

Initially left circular shift will be applied on the five output lanes in such a way that last lane becomes 

first and second last lane becomes last lane in (2). After that right circular shift will be carried out on 

the lanes so that first lane becomes the last and second lane becomes the first lane and then left 

circular shift will be applied on each lane in order to change the positions of the bits within each lane. 

Equation (3) of Theta just involves XORing between the input state matrix and output lanes obtained 

from (2). 

Theta step consists of three main steps in terms of equations that mainly require bitwise XOR 

operation. Equation (1) involves bitwise XOR operation between the 64-bit lanes of each row where 

every lane of each row is independent of each other so parallel operations can be applied on these 

lanes. We have used conventional 64-bit XOR operator in parallel to perform XORing between the 

five lanes in each row of the state array ’A’ and results are stored in intermediate registers. The above 

parallel XOR operations make our design fast and more efficient in terms of performance. Second 

step (2) of step theta involves one bit left circular rotation which is accompanied by simple rewiring 

or replacing the bit pattern of each row, then XORed with the previous output lanes. The results are 

stored in an intermediate registers in the form of five lanes. These lanes are again XORed with input 

state matrix A[x, y] to form new 5 x 5 state matrix A’[x,y]. All the operations are done on modulo 5. 



S.Bhargav & Dr. Drva Sharath Kumar “Compact Implementation of SHA3-1024 on FPGA” 

82                International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 

 

 

 

 



S.Bhargav & Dr. Drva Sharath Kumar “Compact Implementation of SHA3-1024 on FPGA” 

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015               83 

Rho (ρ) and Pi (π) Step 

The next two steps Rho (ρ) and Pi (π) can be expressed jointly by (4) that compute an auxiliary 5 x 5 

array B from the state array ’A’. The operation of Rho (ρ) and Pi (π) take each of the 25 lanes of the 

state array ’A’, perform circular rotation on it by the fixed number of values depending upon the ’x’ 

and ’y’ co-ordinates i.e r[x, y] given in Table I [3] (called Rho (ρ) step) and then place the above 

rotated lanes at the different location in the new array B (called Pi (π) step). Note that all the indices 

are taken modulo 5. 

 

 

 



S.Bhargav & Dr. Drva Sharath Kumar “Compact Implementation of SHA3-1024 on FPGA” 

84                International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 

Chi (χ) Step 

The Chi (χ) step operates on the lanes, i.e. words with 64-bits and manipulates the B array obtained in 

the previous Rho (ρ) and Pi (π) step and replaces the result in the state array A. We can say that the 

Chi (χ) step takes the lane at location [x,y] and XOR it with the logical AND of the lane at address 

location of [x+1,y] and the complement at location [x+2,y]. Following equation is illustrating the 

function Chi (χ). 

 

Iota (i) Step 

The Iota step is the simplest step of Keccak algorithm. It just performs the XOR operation of 

predefined 64-bit constant RC given in [3] with the lane at location [0,0] of the new state matrix ’A’. 

 

In this work, we present an iterative design of SHA-3 512-bit for compact implementation as shown 

in Fig.  The architecture has 128-bit input data just to save extra input bits. The next block in proposed 

design is padder block which pads the required number of zeros with the input data in order to form 

1600-bit state and then inversion is applied on each byte. The output from the padder block is 

forwarded to 2 x 1 Multiplexer (MUX) which drives the output data from padder to the compression-

box of the architecture and selects the input data for the first round and feedback data for other twenty 

three rounds of Keccak with the help of controlling signal (Ctrl 1). When Ctrl 1 is low, MUX select 

the input data and at high, MUX will select the feedback data. First padded message is directly copied 

to Reg A which previously initialized with all zeroes and resulting bits are forward to Compression-

Box (CBox). It is basically the implementation of compression function in SHA-3 algorithm which 

comprises of theta (Θ), rho (ρ), pi (π), chi (χ) and iota (i) step. For performance, we logically 

optimized our design by implementing rho (ρ), pi (π) and chi (χ) steps as a single step. This results in 

saving of hardware resources in term of 48 slices. After completing 48 iterations, final output is 

forwarded to Reg B for storage in order to synchronize the data-path. The last component in the 

architecture is Truncating component where inversion per byte is performed on the output bits and 

then truncated to the desired length of hash output. 

128bitkeccak Sequential Architecture 

 



S.Bhargav & Dr. Drva Sharath Kumar “Compact Implementation of SHA3-1024 on FPGA” 

International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015               85 

SIMULATION WAVEFORMS 

 

CONCLUSION 

The SHA 3 algorithm provides a good security for the data using the authentication format by 

generating hash code. Our logical optimization by merging the three transforms i.e. rho, pi and chi in 

to single transform and by exploring maximum parallelism in the algorithm are contributing factor  

And the whole design has a simple hardware structure and fast running speed and can be widely used 

in digital signatures and 3DES key generation systems. 

REFERENCES 

[1] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions md4, md5, haval-128 and 

ripemd,” IACR, August 2004. 

[2] National Institute of Standards and Technology (nist), “Cryptographic hash algorithm 

competition,” 2007. 

[3] FIPS-202, “Federal information processing standards publication fips-202, secure hash 

algorithm-3 (sha-3),” 2014. 

[4] Xilinx, “Virtex 2.5 V field programmable gate arrays”. 

[5] F.R. Henrquez, A.D. Prez, N.A. Saqib, and C.K. Koc, Cryptographic Algorithms on 

Reconfigurable Hardware. Signals and Communication Technology, Springer, 2007. 

[6] S. Kerckhof, F. Durvaux, N.V. Charvillon, F. Regazzoni, G.M. de Dormale, and F.X. Standaert, 

“compact fpga implementations of the five sha-3 finalists,” Springer Berlin Heidelberg, vol. 

7079, pp. 217–233, 2011. 

[7] A. Akin, A. Aysu, O.C. Ulusel, E. Savas, “Efficient hardware implementations of high 

throughput sha-3 candidates keccak, luffa and blue mid night wish for single- and multi-message 

hashing,” ACM, pp. 168–177, 2010. 

[8] K. Gaj, E. Homsirikamol, and M. Rogawski, “Comprehensive comparison of hardware 

performance of fourteen round 2 sha-3 candidates with 512-bit outputs using field programmable 

gate arrays,” 2ndSHA-3 Candidate Conference, pp 23-24, August 2010. 

[9] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. ONeill, and W.P. Marnane, “FPGA 

implementations of the round two sha-3 candidates,” The second SHA-3 Candidate Conference, 

2010. 

[10] G. Provelengios, P. Kitsos, N. Sklavos, and C. Koulamas, “FPGA-based design approaches of 

keccak hash function,” 15th Euromicro Conference, pp. 648–653, 2012. 

[11] K. Latif, M.M. Rao, A. Aziz, and A. Mahboob, “efficient hardware implementations and 

hardware performance evaluation of sha-3 finalists,” in Proceeding of 3rd SHA-3 Candidate 

Conference, march 2012. 

[12] E. Homsirikamol, M. Rogawski, and K. Gaj, “comparing hardware performance of round 3 sha-3 

candidates using multiple hardware 



S.Bhargav & Dr. Drva Sharath Kumar “Compact Implementation of SHA3-1024 on FPGA” 

86                International Journal of Emerging Engineering Research and Technology V3 ● I7 ● July 2015 

AUTHORS’ BIOGRAPHY 

S.Bhargav, Received The B.TECH Degree In Electronics And Communication 

Engineering From JNTU Hyderabad. In The Year of 2012 with the First Class. He Is 

Currently Pursuing the M.Tech Degree in VLSI and Embedded Systems at Malla 

Reddy College of Engineering and Technology from JNTU Hyderabad .His Area of 

Interest in VLSI CRYPTOGRAPHY. 

 

Dr.Drva Sharath Kumar, Received The B.TECH Degree From Vishweshwaraiah 

Technological University (VTU) In The Year Of 2002 And M.TECH Degree From 

VISHWESHWARAIAH Technological University (VTU) In The Year Of 2005 

And.PH.D DEGREE From ANDHRA UNIVERSITY In The Year Of 2013. He is 

currently working as Professor in the Dept. of ECE in Malla Reddy College of 

Engineering and Technology, Hyderabad, India. His Area of Interest Is VLSI 

DESIGNING 

 

 

 

 

 

 

 

 

 

 


